Список правильных многомерных многогранников и соединений (Vhnvkt hjgfnl,ud] bukikbyjud] bukikijguuntkf n vky;nuyunw)

Перейти к навигации Перейти к поиску
Примеры правильных многогранников
Правильные (2D) многоугольники
Выпуклые Звёздчатые

{5}

{5/2}
Правильные 3D-многогранники
Выпуклые Звёздчатые

{5,3}

{5/2,5}
Правильные 2D-замощения
Евклидовы Гиперболические

{4,4}

{5,4}[англ.]
Правильные 4D-многогранники
Выпуклые Звёздчатые

{5,3,3}

{5/2,5,3}[англ.]
Правильные 3D-замощения
Евклидовы Гиперболические

{4,3,4}

{5,3,4}

Эта страница содержит список правильных многомерных многогранников (политопов) и правильных cоединений этих многогранников в евклидовом, сферическом и гиперболическом пространствах разных размерностей.

Символ Шлефли описывает каждое правильное замощение n-сферы, евклидова и гиперболического пространства. Символ Шлефли описания n-мерного многогранника равным образом описывает мозаику (n-1)-сферы. Вдобавок, симметрия правильного многогранника или замощения выражается как группа Коксетера, которые Коксетер обозначал идентично символам Шлефли, за исключением разграничения квадратными скобками, и эта нотация называется нотацией Коксетера[англ.]. Другой связанный символ — диаграмма Коксетера — Дынкина, которая представляет группу симметрии (без помеченных кружком узлов) и правильные многогранники или замощения с обведённым кружком первым узлом. Например, куб имеет символ Шлефли {4,3}, с его октаэдральной симметрией[англ.] [4,3] или node4node3node, представляется диаграммой Коксетера node_14node3node.

Правильные многогранники сгруппированы по размерности, а затем по форме — выпуклые, невыпуклые и бесконечные. Невыпуклые виды используют те же вершины, что и выпуклые, но имеют пересекающиеся фасеты (грани максимальной размерности = размерности пространства – 1). Бесконечные виды замощают евклидово пространство на единицу меньшей размерности.

Бесконечные формы можно расширить до замощения гиперболического пространства. Гиперболическое пространство подобно обычному пространству, но параллельные прямые с расстоянием расходятся. Это позволяет вершинным фигурам иметь отрицательные угловые дефекты. Например, в вершине может сходиться семь правильных треугольников, лежащих на плоскости. Это нельзя осуществить на обычной (евклидовой) плоскости, но можно сделать при некотором масштабе на гиперболической плоскости.

Многогранники, удовлетворяющие более общему определению и не имеющие простых символов Шлефли, включают правильные косые многогранники и бесконечноугольные правильные косые многогранники с неплоскими фасетами или вершинными фигурами.

Таблица показывает сводку правильных многогранников по размерностям.

Конечные Евклидовы Гиперболические Соединения
Разм. Выпук-
лые
Звёзд-
чатые
Косые Выпук-
лые
Компак-
тные
Звёзд-
чатые
Параком-
пактные
Выпук-
лые
Звёзд-
чатые
1 1 0 0 1 0 0 0 0 0
2 1 1 0 0
3 5 4 ? 3 5 0
4 6 10 ? 1 4 0 11 26 20
5 3 0 ? 3 5 4 2 0 0
6 3 0 ? 1 0 0 5 0 0
7 3 0 ? 1 0 0 0 3 0
8 3 0 ? 1 0 0 0 6 0
9+ 3 0 ? 1 0 0 0 * 0

* 1, если размерность имеет вид 2k − 1; 2, если размерность является степенью двойки; 0 в противном случае.

Не существует правильных звёздчатых замощений в евклидовом пространстве любой размерности.

Одномерное пространство

[править | править код]
Диаграмма Коксетера — Дынкина представляет зеркальные "плоскости" как узлы, и помещает кружок вокруг узла, если точка не лежит на плоскости. Отрезок, { }, node_1 — это точка p и зеркальный образ точки p, а также отрезок между ними.

Одномерный многогранник (1-многогранник) — это замкнутый отрезок, ограниченный двумя конечными точками. 1-многогранник является правильным по определению и представляется символом Шлефли { }[1][2] или диаграммой Коксетера с единственным помеченным кружком узлом, node_1. Норман Джонсон дал им название дайтел и символ Шлефли { } [3].

Будучи тривиальным в качестве многогранника, дайтел возникает в качестве рёбер многоугольников и многогранников[4]. Он используется в определении однородных призм (как в символе Шлефли { }×{p}) или в диаграмме Коксетера node_12node_1pnode как прямое произведение отрезка и правильного многоугольника [5].

Двумерное пространство (многоугольники)

[править | править код]

Двумерные многогранники называются многоугольниками. Правильные многоугольники имеют равные стороны и вписаны в окружность. Правильный p-угольник представляется символом Шлефли {p}.

Обычно только выпуклые многоугольники считаются правильными, но звёздчатые многоугольники наподобие пентаграммы можно также считать правильными. Они используют те же вершины, что и выпуклые формы, но соединение происходит другим путём, при котором окружность обходится более одного раза.

Звёздчатые многоугольники следует называть скорее невыпуклыми, чем вогнутыми, поскольку пересечение рёбер не образует новых вершин и все вершины находятся на окружности.

Символ Шлефли {p} представляет правильный p-угольник.

Название Треугольник
(2-симплекс)
Квадрат
(2-ортоплекс)
(2-куб)
Пятиугольник Шестиугольник Семиугольник Восьмиугольник
Шлефли {3} {4} {5} {6} {7} {8}
Симметрия D3, [3] D4, [4] D5, [5] D6, [6] D7, [7] D8, [8]
Коксетер node_13node node_14node node_15node node_16node node_17node node_18node
Рисунок
Название Девятиугольник Десятиугольник Одиннадцатиугольник Двенадцатиугольник Тринадцатиугольник Четырнадцатиугольник
Шлефли {9} {10} {11} {12} {13} {14}
Симметрия D9, [9] D10, [10] D11, [11] D12, [12] D13, [13] D14, [14]
Дынкин node_19node node_110node node_111node node_112node node_113node node_114node
Рисунок
Название Пятнадцатиугольник Шестнадцатиугольник Семнадцатиугольник Восемнадцатиугольник Девятнадцатиугольник Двадцатиугольник ...p-угольник
Шлефли {15} {16} {17} {18} {19} {20} {p}
Симметрия D15, [15] D16, [16] D17, [17] D18, [18] D19, [19] D20, [20] Dp, [p]
Дынкин node_115node node_116node node_117node node_118node node_119node node_120node node_1pnode
Рисунок

Сферические

[править | править код]

Правильный двуугольник {2} можно считать вырожденным правильным многоугольником. Он может существовать как невырожденный в некоторых неевклидовых пространствах, таких как поверхность сферы или тора.

Название Одноугольник Двуугольник
Символ Шлефли {1} {2}
Симметрия D1, [ ] D2, [2]
Коксетер diagram node или node_h2xnode node_12xnode
Рисунок

Существует бесконечно много правильных звёздчатых многогранников в двумерном пространстве (т.е. многоугольников), символы Шлефли которых являются рациональными числами {n/m}. Они называются звёздчатыми многоугольниками и имеют то же самое расположение вершин[англ.], что и у выпуклого многоугольника.

В общем случае для любого натурального числа n и для всех m, таких, что m < n/2 и m, n взаимно просты, существуют n-точечные правильные звёзды с символами Шлефли {n/m} (строго говоря, {n/m}={n/(nm)}) .

Название Пентаграмма Гептаграммы Октаграмма Эннеаграммы Декаграмма[англ.] ...n-граммы
Шлефли {5/2} {7/2} {7/3} {8/3} {9/2} {9/4} {10/3} {p/q}
Симметрия D5, [5] D7, [7] D8, [8] D9, [9], D10, [10] Dp, [p]
Коксетер node_15ratd2node node_17ratd2node node_17ratd3node node_18ratd3node node_19ratd2node node_19ratd4node node_110ratd3node node_1pratdqnode
Рисунок  
Правильные звёздчатые многоугольники с числом сторон до 20

{11/2}

{11/3}

{11/4}

{11/5}

{12/5}

{13/2}

{13/3}

{13/4}

{13/5}

{13/6}

{14/3}

{14/5}

{15/2}

{15/4}

{15/7}

{16/3}

{16/5}

{16/7}

{17/2}

{17/3}

{17/4}

{17/5}

{17/6}

{17/7}

{17/8}

{18/5}

{18/7}

{19/2}

{19/3}

{19/4}

{19/5}

{19/6}

{19/7}

{19/8}

{19/9}

{20/3}

{20/7}

{20/9}

Пространственные многоугольники

[править | править код]

В 3-мерном пространстве правильный пространственный многоугольник [6] называется антипризматическим многоугольником и он имеет то же расположение вершин[англ.], что и у антипризмы, и его рёбра являются подмножеством рёбер антипризмы, соединяющие зигзагом вершины верхнего и нижнего многоугольников.

Пример правильного пространственного зигзаг-многоугольника
Шестиугольник Восьмиугольник Десятиугольник
D3d, [2+,6] D4d, [2+,8] D5d, [2+,10]
{3}#{ } {4}#{ } {5}#{ } {5/2}#{ } {5/3}#{ }

В 4-мерном пространстве правильный пространственный многоугольник может иметь вершины на торе Клиффорда и связан с вращением Клиффорда[англ.]. В отличие от антипризматичных пространственных многоугольников, пространственные многоугольники двойного вращения могут иметь нечётное число сторон.

Их можно видеть в многоугольниках Петри выпуклых правильных четырёхмерных многогранников[англ.], видимые как правильные плоские многоугольники периметров проекций Коксетера:

Пятиугольник Восьмиугольник Двенадцатиугольник Тридцатиугольник

Пятиячейник

Шестнадцатиячейник

Двадцатичетырёхъячейник

Шестисотячейник

Трёхмерное пространство (многогранники)

[править | править код]

В трёхмерном пространстве правильный многогранник с символом Шлефли {p,q} и диаграммой Коксетера node_1pnodeqnode имеет правильные грани вида {p} и правильную вершинную фигуру {q}.

Вершинная фигура (многогранника) является многоугольником, получаемым соединением вершин, отстоящих на одно ребро от заданной вершины. Для правильных трёхмерных многогранников, эта вершинная фигура является всегда правильным (и планарным) многоугольником.

Существование правильного многогранника {p,q} ограничено неравенством, относящимся к угловому дефекту вершинной фигуры:

 : Многогранник (существует в евклидовом 3-мерном пространстве)
 : Евклидова плоская мозаика
 : Замощение гиперболической плоскости

Перенумеровав перестановки, мы найдём 5 выпуклых форм, 4 звёздчатые формы и 3 плоских замощения, все с многоугольниками {p} и {q} из списка: {3}, {4}, {5}, {5/2} и {6}.

Вдобавок к мозаикам евклидова пространства существует бесконечное количество правильных гиперболических мозаик.

Пять выпуклых правильных многогранников называются платоновыми телами. Вершинная фигура указана вместе с числом вершин. Все эти многогранники имеют эйлерову характеристику (χ) 2.

Название Шлефли
{p,q}
Коксетер
node_1pnodeqnode
Рисунок
(прозрачный)
Рисунок
(тело)
Рисунок
(сфера)
Граней
{p}
Рёбер Вершин
{q}
Симметрия Двойственный
Тетраэдр
(3-симплекс)
{3,3} node_13node3node 4
{3}
6 4
{3}
Td
[3,3]
(*332)
(самодвойственен)
Шестигранник
Куб
(3-куб)
{4,3} node_14node3node 6
{4}
12 8
{3}
Oh
[4,3]
(*432)
Октаэдр
Октаэдр
(3-ортоплекс)
{3,4} node_13node4node 8
{3}
12 6
{4}
Oh
[4,3]
(*432)
Куб
Додекаэдр {5,3} node_15node3node 12
{5}
30 20
{3}
Ih
[5,3]
(*532)
Икосаэдр
Икосаэдр {3,5} node_13node5node 20
{3}
30 12
{5}
Ih
[5,3]
(*532)
Додекаэдр

Сферические

[править | править код]

В сферической геометрии существуют правильные сферические многогранники (мозаики на cфере), которые в нормальном случае являются вырожденными многогранниками. Это осоэдры {2,n} и двойственные им диэдры {n,2}. Коксетер называет такие случаи "несобственными" замощениями [7].

Несколько первых примеров (n от 2 до 6) приведены ниже.

Осоэдры
Название Шлефли
{2,p}
Коксетер
diagram
Рисунок
(sphere)
Граней
{2}π/p
Рёбер Вершин
{p}
Симметрия Двойственный
Двуугольный осоэдр {2,2} node_12xnode2xnode 2
{2}π/2
2 2
{2}π/2
D2h
[2,2]
(*222)
Самодвойственен
Треугольный осоэдр {2,3} node_12xnode3node 3
{2}π/3
3 2
{3}
D3h
[2,3]
(*322)
Треугольный диэдр
Квадратный осоэдр {2,4} node_12xnode4node 4
{2}π/4
4 2
{4}
D4h
[2,4]
(*422)
Квадратный диэдр
Пятиугольный осоэдр {2,5} node_12xnode5node 5
{2}π/5
5 2
{5}
D5h
[2,5]
(*522)
Пятиугольный диэдр
Шестиугольный осоэдр {2,6} node_12xnode6node 6
{2}π/6
6 2
{6}
D6h
[2,6]
(*622)
Шестиугольный диэдр
Диэдры
Название Шлефли
{p,2}
Диаграмма
Коксетера
Рисунок
(сфера)
Граней
{p}
Рёбер Вершин
{2}
Симметрия Двойственный
Двуугольный диэдр {2,2} node_12xnode2xnode 2
{2}π/2
2 2
{2}π/2
D2h
[2,2]
(*222)
Самодвойственен
Треугольный диэдр {3,2} node_13node2xnode 2
{3}
3 3
{2}π/3
D3h
[3,2]
(*322)
Треугольный осоэдр
Квадратный диэдр {4,2} node_14node2xnode 2
{4}
4 4
{2}π/4
D4h
[4,2]
(*422)
Квадратный осоэдр
Пятиугольный диэдр {5,2} node_15node2xnode 2
{5}
5 5
{2}π/5
D5h
[5,2]
(*522)
Пятиугольный осоэдр
Шестиугольный диэдр {6,2} node_16node2xnode 2
{6}
6 6
{2}π/6
D6h
[6,2]
(*622)
Шестиугольный осоэдр

Звёздчатые диэдры и осоэдры также существуют, такие как {5/2,2} и {2,5/2}.

Правильные звёздчатые многогранники называются телами Кеплера — Пуансо и их существует четыре. Они основываются на расположении вершин[англ.] додекаэдра {5,3} и икосаэдра {3,5}:

Как cферические мозаики эти звёздчатые формы перекрывают сферу несколько раз, что называется их плотностью. Для этих форм плотность равна 3 или 7. Рисунки мозаик показывают грани отдельных сферических многоугольников жёлтым цветом.

Название Рисунок
(прозрачный)
Рисунок
(непрозрачный)
Рисунок
(сферический)
Диаграмма образования
звёздчатой
формы
Шлефли
{p,q} и
Коксетер
Граней
{p}
Рёбер Вершин
{q}
Фигура
χ Плот-
ность
[англ.]
Симметрия Двойственный
Малый звёздчатый додекаэдр {5/2,5}
node5node5ratd2node_1
12
{5/2}
30 12
{5}
−6 3 Ih
[5,3]
(*532)
Большой додекаэдр
Большой додекаэдр {5,5/2}
node_15node5ratd2node
12
{5}
30 12
{5/2}
−6 3 Ih
[5,3]
(*532)
Малый звёздчатый додекаэдр
Большой звёздчатый додекаэдр {5/2,3}
node3node5ratd2node_1
12
{5/2}
30 20
{3}
2 7 Ih
[5,3]
(*532)
Большой икосаэдр
Большой икосаэдр {3,5/2}
node_13node5ratd2node
20
{3}
30 12
{5/2}
2 7 Ih
[5,3]
(*532)
Большой звёздчатый додекаэдр

Косые многогранники

[править | править код]

Правильный косой многогранник является обобщением множества правильных многогранников, в котором допускается непланарность вершинных фигур.

Для 4-мерных косых многогранников Коксетер предложил модифицированный символ Шлефли {l,m|n}, имеющих вершинную фигуру {l,m}, m l-угольников вокруг вершины с n-угольными дырами. Их вершинные фигуры являются пространственными многоугольниками, представляющими зигзаги между двумя плоскостями.

Для правильных косых многогранников, представленных символом {l,m|n}, выполняется равенство:

2*sin(π/l)*sin(π/m)=cos(π/n)

Четыре из них можно видеть в 4-мерном пространстве как множество граней четырёх правильных четырёхмерных многогранников, имеющих одно и то же расположение вершин[англ.] и расположение рёбер[англ.]:

{4, 6 | 3} {6, 4 | 3} {4, 8 | 3} {8, 4 | 3}

Четырёхмерное пространство

[править | править код]

Правильные 4-мерные многогранники с символом Шлефли имеют ячейки вида , грани вида , рёберные фигуры и вершинные фигуры .

  • Вершинная фигура (4-мерного многогранника) является (3-мерным) многогранником, образованным соседними к данной вершине вершинами многогранника. Для правильных четырёхмерных многогранников эта вершинная фигура является правильным (3-мерным) многогранником.
  • Рёберной фигурой является многоугольник, образованный прилегающими к ребру гранями. Для правильных четырёхмерных многогранников рёберной фигурой всегда будет правильный многоугольник.

Существование правильных четырёхмерных многогранников ограничено существованием правильного многогранника . Для 4-мерных многогранников предлагается использовать название "полихор"[8][9]

Каждый вид может существовать в пространстве, зависящем от следующего выражения:

 : Гиперсферические 3-мерные соты или 4-мерные многогранники
 : евклидовы 3-мерные соты
 : Гиперболические 3-мерные соты

Эти ограничения допустимы для 21 форм — 6 форм выпуклы, 10 не выпуклы, одна является евклидовыми 3-мерными сотами и 4 являются гиперболическими сотами.

Эйлерова характеристика четырёхмерного многогранника вычисляется по формуле и равна нулю для всех видов.

6 выпуклых правильных четырёхмерных многогранников показаны в таблице ниже. Все эти многогранники имеют эйлерову характеристику (χ) 0.

Название
Шлефли
{p,q,r}
Коксетер
nodepnodeqnodernode
Ячейки[англ.]
{p,q}
Граней
{p}
Рёбер
{r}
Вершин
{q,r}
Двойственный
{r,q,p}
Пятиячейник
(4-симплекс)
{3,3,3} node_13node3node3node 5
{3,3}
10
{3}
10
{3}
5
{3,3}
(самодвойственен)
Тессеракт
(4-куб)
{4,3,3} node_14node3node3node 8
{4,3}
24
{4}
32
{3}
16
{3,3}
Шестнадцатиячейник
Шестнадцатиячейник
(4-ортоплекс)
{3,3,4} node_13node3node4node 16
{3,3}
32
{3}
24
{4}
8
{3,4}
Тессеракт
Двадцатичетырёхъячейник {3,4,3} node_13node4node3node 24
{3,4}
96
{3}
96
{3}
24
{4,3}
(самодвойственен)
Стодвадцатиячейник {5,3,3} node_15node3node3node 120
{5,3}
720
{5}
1200
{3}
600
{3,3}
Шестисотъячейник
Шестисотъячейник {3,3,5} node_13node3node5node 600
{3,3}
1200
{3}
720
{5}
120
{3,5}
Стодвадцатиячейник
Пятиячейник Тессеракт Шестнадцати-
ячейник
Двадцати-
четырёхъячейник
Стодвадцати-
ячейник
Шестисотъячейник
{3,3,3} {4,3,3} {3,3,4} {3,4,3} {5,3,3} {3,3,5}
Каркас (Многоугольник Петри) в косой ортогональной проекции
Ортогональная проекция

Тетраэдральная
оболочка

(центрировано по
ячейке/вершине)

Кубическая оболочка
(центрировано по ячейке)

Кубическая
оболочка

(центрировано по ячейке)

Кубооктаэдральная
оболочка

(центрировано по ячейке)

Усечённая
ромботриаконта-
эдральная
оболочка
[англ.]
(центрировано по ячейке)

Пентакиикоси-
додекаэдральная
оболочка
[англ.]
(центрировано по вершине)
Диаграммы Шлегеля (перспективная проекция)

(центрировано по ячейке)

(центрировано по ячейке)

(центрировано по ячейке)

(центрировано по ячейке)

(центрировано по ячейке)

(центрировано по вершине)
Каркас стереографической проекции (гиперсферический)

Сферические

[править | править код]

4-мерные диэдры и осоэдры существуют как правильные замощения 3-сферы.

Правильные 4-мерные диэдры (2 фасеты = 3-мерные грани) включают: {3,3,2}, {3,4,2}, {4,3,2}, {5,3,2}, {3,5,2}, {p,2,2} и их двойственные 4-мерные осоэдры (2 вершины): {2,3,3}, {2,4,3}, {2,3,4}, {2,3,5}, {2,5,3}, {2,2,p}. Многогранники вида {2,p,2} являются одновременно 4-мерными диэдрами и осоэдрами. Существуют также формы {p,2,q}, которые имеют диэдральные ячейки и осоэдральные вершинные фигуры.

Правильные 4-мерные осоэдры как соты на 3-сфере
Шлефли
{2,p,q}
Коксетер
node_12xnodepnodeqnode
Ячейки[англ.]
{2,p}π/q
Граней
{2}π/p,π/q
Рёбер Вершин Вершинная фигура
{p,q}
Симметрия Двойственный
{2,3,3} node_12xnode3node3node 4
{2,3}π/3
6
{2}π/3,π/3
4 2 {3,3}
[2,3,3] {3,3,2}
{2,4,3} node_12xnode4node3node 6
{2,4}π/3
12
{2}π/4,π/3
8 2 {4,3}
[2,4,3] {3,4,2}
{2,3,4} node_12xnode3node4node 8
{2,3}π/4
12
{2}π/3,π/4
6 2 {3,4}
[2,4,3] {4,3,2}
{2,5,3} node_12xnode5node3node 12
{2,5}π/3
30
{2}π/5,π/3
20 2 {5,3}
[2,5,3] {3,5,2}
{2,3,5} node_12xnode3node5node 20
{2,3}π/5
30
{2}π/3,π/5
12 2 {3,5}
[2,5,3] {5,3,2}

Существует десять правильных 4-мерных звёздчатых многогранника, которые называются многогранниками Шлефли—Гесса[англ.]. Их вершины располагаются на выпуклом стодвадцатиячейнике {5,3,3} и шестисотъячейнике {3,3,5}.

Людвиг Шлефли нашёл четыре из них и отбросил остальные шесть, поскольку не позволял нарушение эйлеровой характеристики на ячейках или вершинных фигурах (F+V−E=2). Эдмунд Гесс (Edmund Hess, 1843–1903) завершил список в своей книге Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder ([3], 1883) (Введение в учение о замощении сферы с учётом теории равногранных и равноугольных многогранников) .

Существует 4 расположения рёбер[англ.] и 7 расположений граней[англ.] в этих 10 правильных звёздчатых 4-мерных многогранниках, показанные как ортогональные проекции:

Название
Каркас Тело Шлефли
{p, q, r}
Коксетер
Ячеек
{p, q}
Граней
{p}
Рёбер
{r}
Вершин
{q, r}
Плот-
ность
[англ.]
χ Группа симметрии Двойственный
{r, q,p}
Икосаэдральный 120-ячейник[англ.]
(огранённый Шестисотячейник)
{3,5,5/2}
node_13node5node5ratd2node
120
{3,5}
1200
{3}
720
{5/2}
120
{5,5/2}
4 480 H4
[5,3,3]
Малый звёздчатый 120-ячейник
Малый звёздчатый 120-ячейник[англ.] {5/2,5,3}
node3node5node5ratd2node_1
120
{5/2,5}
720
{5/2}
1200
{3}
120
{5,3}
4 −480 H4
[5,3,3]
Икосаэдральный 120-ячейник
Большой 120-ячейник[англ.] {5,5/2,5}
node_15node5ratd2node5node
120
{5,5/2}
720
{5}
720
{5}
120
{5/2,5}
6 0 H4
[5,3,3]
Самодвойственный
Великий 120-ячейник[англ.] {5,3,5/2}
node_15node3node5ratd2node
120
{5,3}
720
{5}
720
{5/2}
120
{3,5/2}
20 0 H4
[5,3,3]
Большой звёздчатый 120-ячейник
Большой звёздчатый 120-ячейник[англ.] {5/2,3,5}
node5node3node5ratd2node_1
120
{5/2,3}
720
{5/2}
720
{5}
120
{3,5}
20 0 H4
[5,3,3]
Великий 120-ячейник
Великий звёздчатый 120-ячейник[англ.] {5/2,5,5/2}
node_15ratd2node5node5ratd2node
120
{5/2,5}
720
{5/2}
720
{5/2}
120
{5,5/2}
66 0 H4
[5,3,3]
Самодвойственный
Большой великий 120-ячейник[англ.] {5,5/2,3}
node_15node5ratd2node3node
120
{5,5/2}
720
{5}
1200
{3}
120
{5/2,3}
76 −480 H4
[5,3,3]
Большой икосаэдральный 120-ячейник
Большой икосаэдральный 120-ячейник[англ.]
(большой огранёный 600-ячейник)
{3,5/2,5}
node5node5ratd2node3node_1
120
{3,5/2}
1200
{3}
720
{5}
120
{5/2,5}
76 480 H4
[5,3,3]
Великий большой 120-ячейник
Великий 600-ячейник[англ.] {3,3,5/2}
node_13node3node5ratd2node
600
{3,3}
1200
{3}
720
{5/2}
120
{3,5/2}
191 0 H4
[5,3,3]
Великий большой звёздчатый 120-ячейник
Большой великий 120-ячейник[англ.] {5/2,3,3}
node3node3node5ratd2node_1
120
{5/2,3}
720
{5/2}
1200
{3}
600
{3,3}
191 0 H4
[5,3,3]
Великий 600-ячейник

Существует 4 несостоявшихся правильных звёздчатых перестановок многогранников: {3,5/2,3}, {4,3,5/2}, {5/2,3,4}, {5/2,3,5/2}. Их ячейки и вершинные фигуры существует, но они не покрывают гиперсферу конечным числом представлений.

Размерность пять и выше

[править | править код]

В пятимерном пространстве?! правильные многогранники можно обозначить как , где является типом 4-грани, является типом ячейки, является типом 2-грани, является фигурой грани, является рёберной фигурой, а является вершинной фигурой.

Вершинная фигура (5-мерного многогранника) является 4-мерным многогранником, образованным вершинами, соседними с данной вершиной.
Рёберная фигура[англ.] (5-мерного многогранника) является многогранником, образованным гранями вокруг каждого ребра.
Фигура грани[англ.] (5-мерного многогранника) является многогранником, образованным ячейками вокруг каждой грани.

Правильный 5-мерный многогранник существует, только если и являются правильными четырёхмерными многогранниками.

В зависимости от значения

получим тип пространства

: Сферическое 4-мерное замощение или 5-мерный многогранник
: евклидово 4-мерное замощение
: Гиперболическое 4-мерное замощение

Из этих ограничений получаем 3 выпуклых многогранника, нуль невыпуклых многогранников, 3 4-мерных замощения и 5 гиперболических 4-мерных замощений. Не существует невыпуклых правильных многогранников в пятимерном пространстве и выше.

В размерностях 5 и выше существует только три вида выпуклых правильных многогранников [10].

Название Символ
Шлефли

{p1,...,pn−1}
Коксетер k-граней Тип
фасеты
Вершинная
фигура
Двойственный
n-симплекс {3n−1} node_13node3...3node3node {3n−2} {3n−2} Самодвойственен
n-куб {4,3n−2} node_14node3...3node3node {4,3n−3} {3n−2} n-ортоплекс
n-ортоплекс {3n−2,4} node_13node3...3node4node {3n−2} {3n−3,4} n-куб

Существуют также несобственные случаи, в которых некоторые числа в символе Шлефли равны 2. Например, {p,q,r,...2} является несобственным правильным сферическим многогранником в случае, если {p,q,r...} является правильным сферическим многогранником, и {2,...p,q,r} является несобственным правильным сферическим многогранником, когда {...p,q,r} является правильным сферическим многогранником. Такие многогранники можно использовать как фасеты, дающие формы вида {p,q,...2...y,z}.

Пятимерные пространства

[править | править код]
Название Символ
Шлефли

{p,q,r,s}
Коксетер
Число фасет
(четырёхмерных
граней)
{p,q,r}
Ячеек
(трёхмерных
граней)
{p,q}
Граней
(двумерных)
{p}
Рёбер Вершин Фигура
при грани
{s}
Рёберная
фигура
{r,s}
Вершинная
фигура

{q,r,s}
Гексатерон {3,3,3,3}
node_13node3node3node3node
6
{3,3,3}
15
{3,3}
20
{3}
15 6 {3} {3,3} {3,3,3}
Пентеракт {4,3,3,3}
node_14node3node3node3node
10
{4,3,3}
40
{4,3}
80
{4}
80 32 {3} {3,3} {3,3,3}
5-ортоплекс {3,3,3,4}
node_13node3node3node4node
32
{3,3,3}
80
{3,3}
80
{3}
40 10 {4} {3,4} {3,3,4}

Гексатерон

Пентеракт

5-ортоплекс

Шестимерное пространство

[править | править код]
Название Шлефли Вершин Рёбер Граней (2D) Ячеек (3D) 4D-граней 5D-граней χ
6-симплекс[англ.] {3,3,3,3,3} 7 21 35 35 21 7 0
Хексеракт {4,3,3,3,3} 64 192 240 160 60 12 0
6-ортоплекс[англ.] {3,3,3,3,4} 12 60 160 240 192 64 0

6-мерный симплекс[англ.]

Хексеракт

6-мерный ортоплекс[англ.]

Семимерное пространство

[править | править код]
Название Шлефли Вершин Рёбер Граней (2D) Ячеек (3D) 4D-граней 5D-граней 6D-граней χ
7-симплекс[англ.] {3,3,3,3,3,3} 8 28 56 70 56 28 8 2
Хептеракт {4,3,3,3,3,3} 128 448 672 560 280 84 14 2
7-ортоплекс[англ.] {3,3,3,3,3,4} 14 84 280 560 672 448 128 2

7-симплекс[англ.]

Хептеракт

7-ортоплекс[англ.]

Восьмимерное пространство

[править | править код]
Название Шлефли Вершин Рёбер Граней (2D) Ячеек (3D) 4D-граней 5D-граней 6D-граней 7D-граней χ
8-симплекс[англ.] {3,3,3,3,3,3,3} 9 36 84 126 126 84 36 9 0
Октеракт {4,3,3,3,3,3,3} 256 1024 1792 1792 1120 448 112 16 0
8-ортоплекс[англ.] {3,3,3,3,3,3,4} 16 112 448 1120 1792 1792 1024 256 0

8-симплекс[англ.]

Октеракт

8-ортоплекс[англ.]

Девятимерное пространство

[править | править код]
Название Шлефли Вершин Рёбер Граней (2D) Ячеек (3D) 4D-граней 5D-граней 6D-граней 7D-граней 8D-граней χ
9-симплекс[англ.] {38} 10 45 120 210 252 210 120 45 10 2
Энтенеракт {4,37} 512 2304 4608 5376 4032 2016 672 144 18 2
9-ортоплекс[англ.] {37,4} 18 144 672 2016 4032 5376 4608 2304 512 2

9-симплекс[англ.]

Энтенеракт

9-ортоплекс[англ.]

Десятимерное пространство

[править | править код]
Название Шлефли Вершин Рёбер Граней (2D) Ячеек (3D) 4D-граней 5D-граней 6D-граней 7D-граней 8D-граней 9D-граней χ
10-симплекс[англ.] {39} 11 55 165 330 462 462 330 165 55 11 0
Декеракт {4,38} 1024 5120 11520 15360 13440 8064 3360 960 180 20 0
10-ортоплекс[англ.] {38,4} 20 180 960 3360 8064 13440 15360 11520 5120 1024 0

10-симплекс[англ.]

Декеракт

10-ортоплекс[англ.]

...

Невыпуклые

[править | править код]

Не существует невыпуклых правильных многогранников в размерностях 5 и выше.

Правильные проективные многогранники

[править | править код]

Проективный правильный (n+1)-многогранник существует, если исходное правильное n-сферическое замощение {p,q,...} центрально симметрично. Такие многогранники называются полу-{p,q,...}, и содержат вполовину меньше элементов. Коксетер даёт им символ {p,q,...}/2, в то время как Макмуллен пишет {p,q,...}h/2, где hчисло Кокстера.[11]

Правильные многоугольники с чётным числом сторон имеют полу-2n-угольные проективные многоугольники, {2p}/2.

Существует 4 правильных проективных многогранника[англ.], соответствующих 4 из 5 платоновых тел.

Полукуб и полуоктаэдр обобщаются в полу-n-кубы и полу-n-ортоплексы в любой размерности.

Правильные проективные многогранники в трёхмерном пространстве

[править | править код]
3-dimensional regular hemi-polytopes
Название Коксетер
McMullen
Image Faces Edges Vertices χ
Полукуб[англ.] {4,3}/2
{4,3}3
3 6 4 1
Полуоктаэдр[англ.] {3,4}/2
{3,4}3
4 6 3 1
Полудодекаэдр {5,3}/2
{5,3}5
6 15 10 1
Полуикосаэдр {3,5}/2
{3,5}5
10 15 6 1

Правильные проективные многогранники в четырёхмерном пространстве

[править | править код]

В 4-мерном пространстве 5 из 6 выпуклых правильных многогранников образуют проективные 4-мерные многогранники. 3 специальных случая — это полудвадцатичетырёхъячейник, полушестисотъячейник и полустодвадцатиячейник.

4-мерные правильные полумногогранники!Название Символ
Коксетера
Символ
Макмаллена
Ячеек Граней Рёбер Вершин χ
полутессеракт {4,3,3}/2 {4,3,3}4 4 12 16 8 0
полушестнадцатиячейник {3,3,4}/2 {3,3,4}4 8 16 12 4 0
полудвадцатичетырёхъячейник {3,4,3}/2 {3,4,3}6 12 48 48 12 0
полустодвадцатиячейник {5,3,3}/2 {5,3,3}15 60 360 600 300 0
полушестисотъячейник {3,3,5}/2 {3,3,5}15 300 600 360 60 0

Правильные проективные многогранники в пятимерном пространстве

[править | править код]

Существует только 2 выпуклых правильных проективных полумногогранника в пространствах размерности 5 и выше.

Название Шлефли 4D-граней Ячеек (3D) Граней (2D) Рёбер Вершин χ
полупентеракт {4,3,3,3}/2 5 20 40 40 16 1
полупентакросс[англ.] {3,3,3,4}/2 16 40 40 20 5 1

Бесконечногранники

[править | править код]

Бесконечногранник[англ.] — это многогранник, имеющий бесконечное число фасет. n-бесконечногранник — это n-мерный бесконечногранник: 2-бесконечногранник = бесконечноугольник (апейрогон), 3-бесконечногранник = бесконечногранник в трёхмерном пространстве и т.д.

Существует два главных геометрических класса бесконечногранников:[12]

  • Правильные соты в n-мерном пространстве, полностью заполняющие n-мерное пространство.
  • Правильные косые бесконечногранники[англ.], содержащие n-мерные многообразия в более высоких пространствах.

Одномерное пространство (бесконечноугольники)

[править | править код]

Прямой апейрогон — это правильное замощение прямой с разделением её на бесконечно много равных отрезков. Он имеет бесконечно много вершин и рёбер. Его символ Шлефли равен {∞}, а диаграмма Коксетера — node_1infinnode.

......

Апейрогоны на гиперболической плоскости, среди которых наиболее заметен правильный апейрогон {∞}, могут иметь кривизну, наподобие конечных многоугольников на евклидовой плоскости, и иметь вершины, лежащие на орициклах или гиперциклах.

Правильные апейрогоны со сходимостью на бесконечности имеют символ {∞} и существуют на орициклах, хотя в общем случае они могут существовать на гиперциклах.

{∞} {πi/λ}

Бесконечноугольник на орицикле

Бесконечноугольник на гиперцикле

Выше показаны два гиперболических апейрогона на диске Пуанкаре. На правом рисунке показаны перпендикулярные прямые, разделяющие фундаментальные области, отстоящие на расстояние λ друг от друга.

Пространственные бесконечноугольники

[править | править код]

Косые апейрогоны в двумерном пространстве (плоскости) образуют зигзаг. Если зигзаг симметричен и однороден, апейрогон правильный.

Косые апейрогоны можно построить в пространстве любой размерности. В трёхмерном пространстве косые апейрогоны[англ.] образуют спираль и могут быть левыми или правыми.

Двумерное пространство Трёхмерное пространство

Апейрогон в виде зигзага

Спиральный апейрогон

Двумерное пространство (бесконечногранники)

[править | править код]

Евклидовы мозаики

[править | править код]

Существует три правильных замощения плоскости. Все три имеют эйлерову характеристику (χ) 0.

Название Квадратная мозаика
(кадриль)
Треугольная мозаика
(дельтаплитка)
Шестиугольный паркет
(гексаплитка)
Симметрия p4m, [4,4], (*442) p6m, [6,3], (*632)
Шлефли {p,q} {4,4} {3,6} {6,3}
Диаграмма Коксетера node_14node4node node6node3node_1 node_16node3node
Рисунок

Существует две несобственные правильные мозаики — {∞,2}, бесконечноугольный диэдр, полученный из двух апейрогонов, каждый из которых заполняет полуплоскость, и двойственная ей {2,∞} мозаика, бесконечноугольный осоэдр, который можно представить как бесконечное число параллельных прямых.


{∞,2}[англ.], node_1infinnode2node

{2,∞}[англ.], node_12nodeinfinnode

Евклидовы звёздчатые мозаики

[править | править код]

Не существует правильных замощений плоскости звёздчатыми многоугольниками. Существует бесконечно много пар чисел, для которых выполняется условие плоской мозаики (1/p + 1/q = 1/2), например, {8/3,8}, {10/3,5}, {5/2,10}, {12/5,12}, и т.д., но ни одна из этих звёзд не подходит для замощения.

Гиперболические мозаики

[править | править код]

Замощения гиперболического двухмерного пространства — это гиперболические мозаики[англ.]. Существует бесконечно много правильных мозаик в H2. Как констатировано выше, любая положительная пара {p,q}, такая что 1/p + 1/q < 1/2 даёт гиперболическую мозаику. Фактически для общего треугольника Шварца (pqr) то же самое верно для 1/p + 1/q + 1/r < 1.

Существует много различных путей представления гиперболической плоскости, включая дисковую модель Пуанкаре, в которой плоскость отображается в диск, как показано ниже. Следует рассматривать все многоугольные грани замощения как равносторонние, и многоугольники становятся меньше при приближению к краю диска вследствие применения проекции, что похоже на эффект фотокамеры c объективом «Рыбий глаз».

Существует бесконечно много плоских правильных 3-бесконечногранников как правильных мозаик гиперболической плоскости, имеющих вид {p,q}, где p+q<pq/2.

  • {3,7}, {3,8}, {3,9} ... {3,∞}
  • {4,5}, {4,6}, {4,7} ... {4,∞}
  • {5,4}, {5,5}, {5,6} ... {5,∞}
  • {6,4}, {6,5}, {6,6} ... {6,∞}
  • {7,3}, {7,4}, {7,5} ... {7,∞}
  • {8,3}, {8,4}, {8,5} ... {8,∞}
  • {9,3}, {9,4}, {9,5} ... {9,∞}
  • ...
  • {∞,3}, {∞,4}, {∞,5} ... {∞,∞}

Примеры:

Гиперболические звёздчатые мозаики

[править | править код]

Существует два бесконечных вида гиперболических мозаик, грани или вершинные фигуры которых являются звёздчатыми многоугольниками — {m/2, m} и их двойственные {m, m/2} с m = 7, 9, 11, .... Мозаики {m/2, m} являются звёздчатыми формами мозаик {m, 3}, в то время как двойственные мозаики {m, m/2} являются огранкой мозаик {3, m} и увеличениями[англ.] мозаик {m, 3}.

Схемы {m/2, m} и {m, m/2} продолжаются для нечётных m < 7 как многогранники: если m = 5, мы получим малый звёздчатый додекаэдр и большой додекаэдр, а при m = 3 мы получим тетраэдр. Другие два тела Кеплера — Пуансо (большой звёздчатый додекаэдр и большой икосаэдр) не имеют аналогов в правильных гиперболических мозаиках. Если m чётно, в зависимости от того, как мы выберем определение {m/2}, мы можем получить либо вырожденное покрытие другой мозаики или соединение мозаик.

Название Шлефли Диаграмма Коксетера Рисунок Тип грани
{p}
Вершинная фигура
{q}
Плот-
ность
[англ.]
Симметрия Двойственная
Семиугольная мозаика порядка 7[англ.] {7/2,7} node_17ratd2node7node {7/2}
{7}
3 *732
[7,3]
Семиугольная гептаграммная мозаика
Семиугольная гептаграммная мозаика[англ.] {7,7/2} node_17node7ratd2node {7}
{7/2}
3 *732
[7,3]
Гептаграммная мозаика порядка7
Эннеаграммная мозаика порядка 9 {9/2,9} node_19ratd2node9node {9/2}
{9}
3 *932
[9,3]
Эннеаграммная девятиугольная мозаика
Эннеаграммная девятиугольная мозаика {9,9/2} node_19node9ratd2node {9}
{9/2}
3 *932
[9,3]
Эннеаграммная девятиугольная мозаика порядка 9
Гендекаграммная мозаика порядка 11 {11/2,11} node_111ratd2node11node {11/2}
{11}
3 *11.3.2
[11,3]
Гендекаграммная мозаика одиннадцатиугольная мозаика
Гендекаграммная мозаика одиннадцатиугольная мозаика {11,11/2} node_111node11ratd2node {11}
{11/2}
3 *11.3.2
[11,3]
Гендекаграммная мозаика порядка 11
p- граммная мозаика порядка p {p/2,p} node_1pratd2nodepnode   {p/2} {p} 3 *p32
[p,3]
p- граммная p- угольная мозаика
p-граммная мозаика p-угольная мозаика {p,p/2} node_1pnodepratd2node   {p} {p/2} 3 *p32
[p,3]
p-граммная мозаика порядка p

Косые бесконечногранники в евклидовом 3-мерном пространстве

[править | править код]

Существует три правильных косых бесконечногранников[англ.] в евклидовом трёхмерном пространстве с правильным пространственным многоугольником в качестве вершинных фигур [13][14][15]. Они имеют то же самое расположение вершин[англ.] и расположение рёбер[англ.], что и у 3 выпуклых однородных сот[англ.].

  • 6 квадратов вокруг каждой вершины: {4,6|4}
  • 4 шестиугольника вокруг каждой вершины: {6,4|4}
  • 6 шестиугольников вокруг каждой вершины: {6,6|3}
12 "чистых" бесконечногранников в евклидовом 3-мерном пространстве на основе кубических сот, {4,3,4} [16]. Оператор Петри[англ.] π заменяет грани многоугольниками Петри. δ является двойственным оператором, обменивающим местами вершины и грани. φk является k-м оператором огранки. η является оператором взятия половины, а σ — взятием косой половины.
Правильный косой многоугольник

{4,6|4}

{6,4|4}

{6,6|3}

Существует тридцать правильных бесконечноугольников в евклидовом трёхмерном пространстве [17]. Они включают как перечисленные выше, так и 8 других "чистых" бесконечноугольников. Все они связаны с кубическими сотами {4,3,4}. Остальные имеют пространственные многоугольные грани: {6,6}4, {4,6}4, {6,4}6, {∞,3}a, {∞,3}b, {∞,4}.*3, {∞,4}6,4, {∞,6}4,4 и {∞,6}6,3.

Косые бесконечногранники в гиперболическом трёхмерном пространстве

[править | править код]

Существует 31 правильный косой бесконечногранник[англ.] в гиперболическом трёхмерном пространстве [18]:

  • 14 компактных: {8,10|3}, {10,8|3}, {10,4|3}, {4,10|3}, {6,4|5}, {4,6|5}, {10,6|3}, {6,10|3}, {8,8|3}, {6,6|4}, {10,10|3},{6,6|5}, {8,6|3} и {6,8|3}.
  • 17 паракомпактных: {12,10|3}, {10,12|3}, {12,4|3}, {4,12|3}, {6,4|6}, {4,6|6}, {8,4|4}, {4,8|4}, {12,6|3}, {6,12|3}, {12,12|3}, {6,6|6}, {8,6|4}, {6,8|4}, {12,8|3}, {8,12|3} и {8,8|4}.

Трёхмерное пространство (4-apeirotopes)

[править | править код]

Замощения евклидова трёхмерного пространства

[править | править код]
Рёберный каркас кубических сот {4,3,4}

Существует только одно невырожденное правильное замощение 3-мерного пространства (соты), {4, 3, 4} [19]:

Название Шлефли
{p,q,r}
Коксетер
nodepnodeqnodernode
Тип
ячейки
{p,q}
Тип
грани
{p}
Рёберная
фигура
{r}
Вершинная
фигура

{q,r}
χ Двойственный
Кубические соты {4,3,4} node_14node3node4node {4,3} {4} {4} {3,4} 0 Самодвойственны

Несобственные замощения евклидова трёхмерного пространства

[править | править код]
Правильные соты {2,4,4}, в виде проекции на сферу.

Существует шесть несобственных правильных замощений, попарно основанных на трёх правильных евклидовых замощениях. Их ячейки и вершинные фигуры являются правильными осоэдрами {2,n}, диэдрами {n,2} и евклидовыми мозаиками. Эти несобственные правильные мозаики конструкционно связаны с призматическими однородными сотами операцией усечения. Они являются высокоразмерными аналогами бесконечноугольной мозаики порядка 2[англ.] и бесконечноугольного осоэдра[англ.].

Шлефли
{p,q,r}
Диаграмма
Коксетера
Тип
ячейки
{p,q}
Тип
грани
{p}
Рёберная
фигура
{r}
Вершинная
фигура

{q,r}
{2,4,4}[англ.] node_12node4node4node {2,4} {2} {4} {4,4}
{2,3,6}[англ.] node_12node3node6node {2,3} {2} {6} {3,6}
{2,6,3} node_12node6node3node {2,6} {2} {3} {6,3}
{4,4,2} node_14node4node2node {4,4} {4} {2} {4,2}
{3,6,2} node_13node6node2node {3,6} {3} {2} {6,2}
{6,3,2} node_16node3node2node {6,3} {6} {2} {3,2}

Замощения гиперболического трёхмерного пространства

[править | править код]
4 компактных правильных сот

{5,3,4}

{5,3,5}[англ.]

{4,3,5}[англ.]

{3,5,3}[англ.]
4 из 11 паракомпактных правильных сот

{3,4,4}

{3,6,3}[англ.]

{4,4,3}[англ.]

{4,4,4}[англ.]

Существует десять плоских правильных сот гиперболического 3-мерного пространства[20] (перечислены выше как замощения):

  • 4 компактных: {3,5,3}, {4,3,5}, {5,3,4} и {5,3,5}
  • 6 паракомпактных: {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5} и {6,3,6}.

Замощения гиперболического 3-мерного пространства можно назвать гиперболическими сотами. Существует 15 гиперболических сот в H3, 4 компактных и 11 паракомпактных.

Название Символ
Шлефли

{p,q,r}
Коксетер
nodepnodeqnodernode
Тип
ячейки
{p,q}
Тип
грани
{p}
Рёберная
фигура
{r}
Вершинная
фигура

{q,r}
χ Двойственный
Икосаэдральные соты[англ.] {3,5,3} node_13node5node3node {3,5} {3} {3} {5,3} 0 Самодвойственны
Кубические соты порядка 5[англ.] {4,3,5} node_14node3node5node {4,3} {4} {5} {3,5} 0 {5,3,4}
Додекаэдральные соты порядка 4 {5,3,4} node_15node3node4node {5,3} {5} {4} {3,4} 0 {4,3,5}
Додекаэдральные соты порядка 5[англ.] {5,3,5} node_15node3node5node {5,3} {5} {5} {3,5} 0 Самодвойственны

Существует также 11 паракомпактных H3 сот (с бесконечными (евклидовыми) ячейками и/или вершинными фигурами): {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5} и {6,3,6}.

Название Символ
Шлефли

{p,q,r}
Коксетер
nodepnodeqnodernode
Тип
ячейки
{p,q}
Тпи
грани
{p}
Рёберная
фигура
{r}
Вершинная
фигура

{q,r}
χ Двойственный
Тетраэдральные соты порядка 6[англ.] {3,3,6} node_13node3node6node {3,3} {3} {6} {3,6} 0 {6,3,3}
Шестиугольные мозаичные соты[англ.] {6,3,3} node_16node3node3node {6,3} {6} {3} {3,3} 0 {3,3,6}
Октаэдральные соты порядка 4 {3,4,4} node_13node4node4node {3,4} {3} {4} {4,4} 0 {4,4,3}
Квадратные мозаичные соты[англ.] {4,4,3} node_14node4node3node {4,4} {4} {3} {4,3} 0 {3,3,4}
Треугольные мозаичные соты[англ.] {3,6,3} node_13node6node3node {3,6} {3} {3} {6,3} 0 Самодвойственны
Кубические соты порядка 6[англ.] {4,3,6} node_14node3node6node {4,3} {4} {4} {3,4} 0 {6,3,4}
Шестиугольные мозаичные соты порядка 4[англ.] {6,3,4} node_16node3node4node {6,3} {6} {4} {3,4} 0 {4,3,6}
Квадратные мозаичные соты порядка 4[англ.] {4,4,4} node_14node4node4node {4,4} {4} {4} {4,4} 0 {4,4,4}
Додекаэдральные соты порядка 6[англ.] {5,3,6} node_15node3node6node {5,3} {5} {5} {3,5} 0 {6,3,5}
Шестиугольные мозаичные соты порядка 5[англ.] {6,3,5} node_16node3node5node {6,3} {6} {5} {3,5} 0 {5,3,6}
Шестиугольные мозаичные соты порядка 6[англ.] {6,3,6} node_16node3node6node {6,3} {6} {6} {3,6} 0 Самодвойственны

Некомпактные решения существуют как лоренцевы группы Коксетера и могут быть визуализированы с помощью открытой области в гиперболическом пространстве (фундаментальный тетраэдрон, имеющий некоторые части недостижимыми ввиду бесконечности), и некоторые нарисованы ниже, показывая их пересечение с плоскостью. Все соты, не показанные в таблицах и не имеющие двойки в их символе Шлефли, являются некомпактными.

Сферические/Евклидовы/гиперболические(компактные/паракомпактные/некомпактные) соты {p,3,r}
p \ r 3 4 5 6 7 8 ... ∞
3

{3,3,3}
node_13node3node3node

{3,3,4}
node_13node3node4node

{3,3,5}
node_13node3node5node

{3,3,6}
node_13node3node6node

{3,3,7}
node_13node3node7node

{3,3,8}
node_13node3node8node

{3,3,∞}
node_13node3nodeinfinnode
4

{4,3,3}
node_14node3node3node

{4,3,4}
node_14node3node4node

{4,3,5}
node_14node3node5node

{4,3,6}
node_14node3node6node

{4,3,7}
node_15node3node7node

{4,3,8}
node_15node3node8node

{4,3,∞}
node_15node3nodeinfinnode
5

{5,3,3}
node_15node3node3node

{5,3,4}
node_15node3node4node

{5,3,5}
node_15node3node5node

{5,3,6}
node_15node3node6node

{5,3,7}
node_15node3node7node

{5,3,8}
node_15node3node8node

{5,3,∞}
node_15node3nodeinfinnode
6

{6,3,3}
node_16node3node3node

{6,3,4}
node_16node3node4node

{6,3,5}
node_16node3node5node

{6,3,6}
node_16node3node6node

{6,3,7}
node_16node3node7node

{6,3,8}
node_16node3node8node

{6,3,∞}
node_16node3nodeinfinnode
7

{7,3,3}
node_17node3node3node
{7,3,4}
node_17node3node4node
{7,3,5}
node_17node3node5node
{7,3,6}
node_17node3node7node
{7,3,7}
node_17node3node7node
{7,3,8}
node_17node3node8node
{7,3,∞}
node_17node3nodeinfinnode
8
{8,3,3}
node_18node3node3node
{8,3,4}
node_18node3node4node
{8,3,5}
node_18node3node5node
{8,3,6}
node_18node3node8node
{8,3,7}
node_18node3node7node
{8,3,8}
node_18node3node8node
{8,3,∞}
node_18node3nodeinfinnode
...
{∞,3,3}
node_1infinnode3node3node
{∞,3,4}
node_1infinnode3node4node
{∞,3,5}
node_1infinnode3node5node
{∞,3,6}
node_1infinnode3nodeinfinnode
{∞,3,7}
node_1infinnode3node7node
{∞,3,8}
node_1infinnode3node8node
{∞,3,∞}
node_1infinnode3nodeinfinnode
q = 4 q = 5 q = 6
p \ r 3 4 5
3

{3,4,3}
node_13node4node3node

{3,4,4}
node_13node4node4node

{3,4,5}
node_13node4node5node
4

{4,4,3}
node_14node4node3node

{4,4,4}
node_14node4node4node

{4,4,5}
node_14node4node5node
5

{5,4,3}
node_15node4node3node

{5,4,4}
node_15node4node4node

{5,4,5}
node_15node4node5node
p \ r 3 4
3

{3,5,3}
node_13node5node3node

{3,5,4}
node_13node5node4node
4

{4,5,3}
node_14node5node3node

{4,5,4}
node_14node5node4node
5

{5,5,3}
node_15node5node3node

{5,5,4}
node_15node5node4node
p \ r 3 4
3

{3,6,3}
node_13node6node3node

{3,6,4}
node_13node6node4node
4

{4,6,3}
node_14node6node3node

{4,6,4}
node_14node6node4node
5

{5,6,3}
node_15node6node3node

{5,6,4}
node_15node6node4node

Не существует гиперболических звёздчатых сот в H3 — все формы с правильным звёздчатым многогранником в качестве ячейки, вершинной фигуры, или того и другого оказываются сферическими.

Четырёхмерное пространство (5-бесконечногранники)

[править | править код]

Замощения евклидов 4-мерного пространства

[править | править код]

Существует три вида бесконечных правильных (сот), которые могут заполнить евклидово четырёхмерное пространство:

Название Символ
Шлефли

{p,q,r,s}
Тип
фасеты
{p,q,r}
Тип
ячейки
{p,q}
Тип
грани
{p}
Фигура
грани
{s}
Рёберная
фигура
{r,s}
Вершинная
фигура

{q,r,s}
Двойственный
Тессерактные соты[англ.] {4,3,3,4} {4,3,3} {4,3} {4} {4} {3,4} {3,3,4} Самодвойственены
Шестнадцатиячейные соты {3,3,4,3} {3,3,4} {3,3} {3} {3} {4,3} {3,4,3} {3,4,3,3}
Двадцати-
четырёхъячейные соты
{3,4,3,3} {3,4,3} {3,4} {3} {3} {3,3} {4,3,3} {3,3,4,3}

Спроецированный фрагмент сот {4,3,3,4}
(Тессерактовые соты)

Спроецированный фрагмент сот {3,3,4,3}
(Шестнадцатиячейные соты)

Спроецированный фрагмент сот {3,4,3,3}
(24-ячейные соты)

Существует также два несобственных случая, {4,3,4,2} и {2,4,3,4}. Существует три плоских правильных вида сот евклидова 4-мерного пространства:[19]

  • {4,3,3,4}, {3,3,4,3} и {3,4,3,3}.

Существует семь плоских правильных выпуклых сот гиперболического 4-мерного пространства:[20]

  • 5 компактных: {3,3,3,5}, {5,3,3,3}, {4,3,3,5}, {5,3,3,4}, {5,3,3,5}
  • 2 паракомпактных: {3,4,3,4} и {4,3,4,3}.

Существует четыре плоских правильных звёздчатых видов сот в гиперболическом 4-мерном пространстве:[20]

  • {5/2,5,3,3}, {3,3,5,5/2}, {3,5,5/2,5} и {5,5/2,5,3}.

Замощения гиперболического 4-мерного пространства

[править | править код]

Существует семь выпуклых правильных сот и четыре звёздчатые формы сот в пространстве H4 [21]. Пять выпуклых видов компактны, а два паракомпактны.

Пять компактных правильных сот в H4:

Название Символ
Шлефли

{p,q,r,s}
Тип
фасеты
{p,q,r}
Тип
ячейки
{p,q}
Тип
грани
{p}
Фигура
грани
{s}
Рёберная
фигура
{r,s}
Вершинная
фигура

{q,r,s}
Двойственный
Пятиячейные соты порядка 5[англ.] {3,3,3,5} {3,3,3} {3,3} {3} {5} {3,5} {3,3,5} {5,3,3,3}
120-ячейные соты {5,3,3,3} {5,3,3} {5,3} {5} {3} {3,3} {3,3,3} {3,3,3,5}
Тессерактные соты порядка 5[англ.] {4,3,3,5} {4,3,3} {4,3} {4} {5} {3,5} {3,3,5} {5,3,3,4}
120-ячейные соты порядка 4[англ.] {5,3,3,4} {5,3,3} {5,3} {5} {4} {3,4} {3,3,4} {4,3,3,5}
120-ячейные соты порядка 5[англ.] {5,3,3,5} {5,3,3} {5,3} {5} {5} {3,5} {3,3,5} Самодвойственен

Два правильных паракомпактных правильных вида сот в H4: {3,4,3,4}, {4,3,4,3}.

Название Символ
Шлефли

{p,q,r,s}
Тип
фасеты
{p,q,r}
Тип
ячейки
{p,q}
Тип
грани
{p}
Фигура
грани
{s}
Рёберная
фигура
{r,s}
Вершинная
фигура

{q,r,s}
Двойственный
24-ячейные соты порядка 4[англ.] {3,4,3,4} {3,4,3} {3,4} {3} {4} {3,4} {4,3,4} {4,3,4,3}
Кубические сотовые соты[англ.] {4,3,4,3} {4,3,4} {4,3} {4} {3} {4,3} {3,4,3} {3,4,3,4}

Некомпактные решения существуют как лоренцевы группы Коксетера и могут быть визуализированы с помощью открытой области в гиперболическом пространстве (фундаментальный пятиячейник, имеющий некоторые части недостижимыми ввиду бесконечности). Все соты, не показанные в таблицах и не имеющие двойки в их символе Шлефли, являются некомпактными.

Сферические/Евклидовы/гиперболические(компактные/паракомпактные/некомпактные) соты {p,q,r,s}
q=3, s=3
p \ r 3 4 5
3
{3,3,3,3}
node_13node3node3node3node

{3,3,4,3}
node_13node3node4node3node

{3,3,5,3}
node_13node3node5node3node
4
{4,3,3,3}
node_14node3node3node3node

{4,3,4,3}
node_14node3node4node3node

{4,3,5,3}
node_14node3node5node3node
5
{5,3,3,3}
node_15node3node3node3node

{5,3,4,3}
node_15node3node4node3node

{5,3,5,3}
node_15node3node5node3node
q=3, s=4
p \ r 3 4
3
{3,3,3,4}
node_13node3node3node4node

{3,3,4,4}
node_13node3node4node4node
4
{4,3,3,4}
node_14node3node3node4node

{4,3,4,4}
node_14node3node4node4node
5
{5,3,3,4}
node_15node3node3node4node

{5,3,4,4}
node_15node3node4node4node
q=3, s=5
p \ r 3 4
3
{3,3,3,5}
node_13node3node3node5node

{3,3,4,5}
node_13node3node4node5node
4
{4,3,3,5}
node_14node3node3node5node

{4,3,4,5}
node_14node3node4node5node
5
{5,3,3,5}
node_15node3node3node5node

{5,3,4,5}
node_15node3node4node5node
q=4, s=3
p \ r 3 4
3
{3,4,3,3}
node_13node4node3node3node

{3,4,4,3}
node_13node4node4node3node
4
{4,4,3,3}
node_14node4node3node3node

{4,3,4,3}
node_14node4node4node3node
q=4, s=4
p \ r 3 4
3
{3,4,3,4}
node_13node4node3node4node

{3,4,4,4}
node_13node4node4node4node
4
{4,4,3,4}
node_14node4node3node4node

{4,4,4,4}
node_14node4node4node4node
q=4, s=5
p \ r 3 4
3
{3,4,3,5}
node_13node4node3node5node

{3,4,4,5}
node_13node4node4node5node
4
{4,4,3,5}
node_14node4node3node5node

{4,4,4,5}
node_14node4node4node5node

Звёздчатые замощения гиперболического 4-мерного пространства

[править | править код]

Существует четыре вида правильных звёздчатых сот в пространстве H4:

Название Символ
Шлефли

{p,q,r,s}
Тип
фасеты
{p,q,r}
Тип ячейки
type
{p,q}
Тип
грани
{p}
Фигура
грани
{s}
Рёберная
фигура
{r,s}
Вершинная
фигура

{q,r,s}
Двойственный Плот-
ность
Соты из малого звёздчатого 120-ячейника[англ.] {5/2,5,3,3} {5/2,5,3}[англ.] {5/2,5} {5} {5} {3,3} {5,3,3} {3,3,5,5/2} 5
600-ячейник пентаграммного порядка[англ.] {3,3,5,5/2} {3,3,5} {3,3} {3} {5/2} {5,5/2} {3,5,5/2} {5/2,5,3,3} 5
Икосаэдральные 120-ячейные соты порядка 5[англ.] {3,5,5/2,5} {3,5,5/2} {3,5} {3} {5} {5/2,5} {5,5/2,5} {5,5/2,5,3} 10
Соты большого 120-ячейника[англ.] {5,5/2,5,3} {5,5/2,5} {5,5/2} {5} {3} {5,3} {5/2,5,3} {3,5,5/2,5} 10

Пятимерное пространство (бесконечноугольные 6-многогранники)

[править | править код]

Существуют только одни плоские правильные соты в евклидовом 5-мерном пространстве: ( перечислены выше как замощения) [19]

  • {4,3,3,3,4}

Существует пять плоских правильных сот гиперболического 5-мерного пространства, все паракомпактные: (перечислены выше как замощения)[20]

  • {3,3,3,4,3}, {3,4,3,3,3}, {3,3,4,3,3}, {3,4,3,3,4} и {4,3,3,4,3}

Замощение s евклидова 5-мерного пространства

[править | править код]

Гиперкубические соты является единственным семейством правильных сот, которые могут замостить пространство любой размерности (пять и выше), образованные фасетами-гиперкубами, по четыре вокруг каждой (n-2)-мерной грани.

Название Шлефли
{p1, p2, ..., pn−1}
Тип
фасеты
Вершинная
фигура
Двойственный
Квадратный паркет {4,4} {4} {4} Самодвой-
ственен
Кубические соты {4,3,4} {4,3} {3,4} Самодвой-
ственны
Тессерактные соты[англ.] {4,32,4} {4,32} {32,4} Самодвой-
ственны
5-кубические соты[англ.] {4,33,4} {4,33} {33,4} Самодвой-
ственны
6-кубические соты[англ.] {4,34,4} {4,34} {34,4} Самодвой-
ственны
7-кубические соты[англ.] {4,35,4} {4,35} {35,4} Самодвой-
ственны
8-кубические соты[англ.] {4,36,4} {4,36} {36,4} Самодвой-
ственны
n-мерные гиперкубические соты {4,3n−2,4} {4,3n−2} {3n−2,4} Самодвой-
ственны

В E5 существуют также несобственные случаи {4,3,3,4,2}, {2,4,3,3,4}, {3,3,4,3,2}, {2,3,3,4,3}, {3,4,3,3,2} и {2,3,4,3,3}. В En, {4,3n−3,4,2} и {2,4,3n−3,4} являются всегда несобственными евклидовыми замощениями.

Замощения гиперболического 5-мерного пространства

[править | править код]

Существует 5 правильных видов сот в H5, все паракомпактные. Они включают бесконечные (евклидовы) фасеты или вершинные фигуры: {3,4,3,3,3}, {3,3,4,3,3}, {3,3,3,4,3}, {3,4,3,3,4} и {4,3,3,4,3}.

Существует два некомпактных правильных замощения гиперболического пространстваразмерности 5 и выше и нет паракомпактных правильных замощений в гиперболическом пространстве размерности 6 и выше.

Название Символ
Шлефли

{p,q,r,s,t}
Тип
фасеты
{p,q,r,s}
4-face
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Cell
figure
{t}
Face
figure
{s,t}
Edge
figure
{r,s,t}
Вершинная
фигура

{q,r,s,t}
Двойственный
5-ортоплексные соты[англ.] {3,3,3,4,3} {3,3,3,4} {3,3,3} {3,3} {3} {3} {4,3} {3,4,3} {3,3,4,3} {3,4,3,3,3}
Двадцати-
четырёхъячейные сотовые соты
{3,4,3,3,3} {3,4,3,3} {3,4,3} {3,4} {3} {3} {3,3} {3,3,3} {4,3,3,3} {3,3,3,4,3}
Шестнадцатиячейные сотовые соты {3,3,4,3,3} {3,3,4,3} {3,3,4} {3,3} {3} {3} {3,3} {4,3,3} {3,4,3,3} Самодвой-
ственны
24-ячейные соты порядка 4[англ.] {3,4,3,3,4} {3,4,3,3} {3,4,3} {3,4} {3} {4} {3,4} {3,3,4} {4,3,3,4}[англ.] {4,3,3,4,3}
Тессерактные сотовые соты[англ.] {4,3,3,4,3} {4,3,3,4}[англ.] {4,3,3} {4,3} {4} {3} {4,3} {3,4,3} {3,3,4,3} {3,4,3,3,4}

Поскольку не существует правильных звёздчатых n-многогранников для n ≥ 5, которые могли бы быть потенциальными ячейками или вершинными фигурами, не существует больше гиперболических звёздчатых сот в Hn для n ≥ 5.

Размерность 6 и выше (7-мерные бесконечногранники+)

[править | править код]

Замощения гиперболического 6-мерного и выше пространства

[править | править код]

Не существует правильных компактных или паракомпактных замощений гиперболического пространства размерности 6 или выше. Все целые неперчисленные значения дают некомпактное замощение гиперболического n-мерного пространства.

Соединения многогранников

[править | править код]

Двухмерные соединения

[править | править код]

Для любого натурального числа n существует n-вершинный звёздчатый правильный многоугольник с символом Шлефли {n/m} для любого m < n/2 (строго говоря, {n/m}={n/(n−m)}), где m и n взаимно просты. Если m и n не взаимно просты, полученный многоугольник будет иметь n/m сторон. Новая фигура получается вращением этих n/m-угольников на одну вершину (влево), пока число вращений не достигнет числа n/m минус единица, и комбинацией этих повёрнутых фигур. В экстремальном случае, когда n/m равно 2, получим фигуру из n/2 отрезков. Такая фигура называется вырожденным звёздчатым многоугольником.

В других случаях, когда n и m имеют общий делитель, получим звёздчатый многоугольник с меньшим n и с ним можно скомбинировать версии, полученные вращением. Эти фигуры называются звёздчатыми фигурами, несобственными звёздчатыми многоугольниками или соединениями многоугольников. Для них часто используется то же обозначение {n/m}, хотя некоторые авторы, такие как Грюнбаум (1994), предпочитают (с некоторыми уточнениями) форму k{n} как более правильную, где, обычно, k = m.

Следующее усложнение возникает, когда мы соединяем два или более звёздчатых многоугольника, как, например, две пентаграммы, отличающиеся поворотом на 36° и вписанные в десятиугольник. Правильнее в этом случае писать в виде k{n/m}, в нашем случае 2{5/2}, а не использовать обычно используемое {10/4}.

Расширенная нотация Коксетера для соединения многоугольников имеет вид c{m,n,...}[d{p,q,...}]e{s,t,...}, в которой отражается, что d различных {p,q,...} вместе покрывают вершины {m,n,...} c раз и грани {s,t,...} e раз. Если не существует правильного {m,n,...}, первая часть записи удаляется, оставляя [d{p,q,...}]e{s,t,...}. Противоположный случай — если не существует правильного {s,t,...}. Двойственным к of c{m,n,...}[d{p,q,...}]e{s,t,...} является e{t,s,...}[d{q,p,...}]c{n,m,...}. Если c или e равно 1, их можно опускать. Для соединения многоугольников эта нотация сводится к {nk}[k{n/m}]{nk}. Например, гексаграмму можно записать как {6}[2{3}]{6}.

Примеры для n=2..10, nk≤30

2{2}

3{2}

4{2}

5{2}

6{2}

7{2}

8{2}

9{2}

10{2}

11{2}

12{2}

13{2}

14{2}

15{2}

2{3}

3{3}

4{3}[англ.]


5{3}[англ.]

6{3}[англ.]

7{3}

8{3}

9{3}

10{3}

2{4}

3{4}[англ.]

4{4}[англ.]

5{4}[англ.]

6{4}

7{4}

2{5}[англ.]

3{5}[англ.]

4{5}[англ.]

5{5}

6{5}

2{5/2}

3{5/2}

4{5/2}

5{5/2}

6{5/2}

2{6}[англ.]

3{6}[англ.]

4{6}

5{6}

2{7}[англ.]

3{7}

4{7}

2{7/2}

3{7/2}

4{7/2}

2{7/3}

3{7/3}

4{7/3}

2{8}[англ.]

3{8}

2{8/3}

3{8/3}

2{9}[англ.]

3{9}

2{9/2}

3{9/2}

2{9/4}

3{9/4}

2{10}[англ.]

3{10}

2{10/3}

3{10/3}

2{11}

2{11/2}

2{11/3}

2{11/4}

2{11/5}

2{12}[англ.]

2{12/5}

2{13}

2{13/2}

2{13/3}

2{13/4}

2{13/5}

2{13/6}

2{14}

2{14/3}

2{14/5}

2{15}

2{15/2}

2{15/4}

2{15/7}

Правильные пространственные многоугольники также создают соединения, которые можно наблюдать в рёбрах призматического соединения антипризм[англ.], например:

Правильные соединения пространственных многоугольников
Соединение
пространственных квадратов
Соединение
пространственных шестиугольников
Соединение
пространственных десятиугольников
Два {2}#{ } Три {2}#{ } Два {3}#{ } Два {5/3}#{ }

Трёхмерные соединения

[править | править код]

Правильные соединения многогранников можно определить как соединения, которые, подобно правильным многогранников, вершинно транзитивны, рёберно транзитивны[англ.] и транзитивны по граням[англ.]. По этому определению имеется 5 правильных соединений.

Симметрия [4,3], Oh [5,3]+, I [5,3], Ih
Двойственность Самодвойственный Двойственные пары
Рисунок
Сферические
Многогранники Звёздчатый октаэдр 5 {3,3} 10 {3,3}[англ.] 5 {4,3}[англ.] 5 {3,4}
Коксетер {4,3}[2{3,3}]{3,4} {5,3}[5{3,3}]{3,5} 2{5,3}[10{3,3}]2{3,5} 2{5,3}[5{4,3}] [5{3,4}]2{3,5}

Соединения на евклидовой и гиперболической плоскостях

[править | править код]

Существует восемнадцать двупараметрических семейств правильных соединений мозаик евклидовой плоскости. На гиперболической плоскости известны пять однопараметрических семейств и семнадцать изолированных случаев, но полнота этого списка ещё не доказана.

Семейства соединений евклидовой и гиперболической плоскостей 2 {p,p} (4 ≤ p ≤ ∞, p целое) аналогичны сферическим звёздчатым октаэдрам, 2 {3,3}.

Несколько примеров евклидовых и гиперболических правильных соединений
Самодвойственные Самодвойственные Самодвойственные
2 {4,4} 2 {6,3} 2 {3,6} 2 {∞,∞}[англ.]
{{4,4}} или a{4,4} или {4,4}[2{4,4}]{4,4}
nodes_10rusplit2-44node + nodes_01rdsplit2-44node или node_h34node4node
[2{6,3}]{3,6} a{6,3} или {6,3}[2{3,6}]
branch_10rusplit2node + branch_01rdsplit2node или node_h36node3node
{{∞,∞}} или a{∞,∞} или {4,∞}[2{∞,∞}]{∞,4}
labelinfinbranch_10rusplit2-iinode + labelinfinbranch_01rdsplit2-iinode или node_h3infinnodeinfinnode
3 {6,3} 3 {3,6} 3 {∞,∞}[англ.]
2{3,6}[3{6,3}]{6,3} {3,6}[3{3,6}]2{6,3}
branch_10rusplit2node + branch_01rdsplit2node + branchsplit2node_1

labelinfinbranch_10rusplit2-iinode + labelinfinbranch_01rdsplit2-iinode + labelinfinbranchsplit2-iinode_1

Соединения в четырёхмерном пространстве

[править | править код]
Ортогональные проекции
75 {4,3,3} 75 {3,3,4}

В 4-мерном пространстве существует тридцать два правильных соединения правильных многогранников, которые Коксетер перечислил в своей книге Regular Polytopes:[22]

Самодвойственные правильные соединения
Соединение Симметрия Расположение вершин Расположение ячеек
120 {3,3,3} [5,3,3], порядок 14400 {5,3,3} {3,3,5}
5 {3,4,3} [5,3,3], порядок 14400 {3,3,5} {5,3,3}
Правильные соединения как двойственные пары
Соединение 1 Соединение 2 Симметрия Расположение вершин (1) Расположение ячеек (1) Расположение вершин (2) Расположение ячеек (2)
3 {3,3,4}[23] 3 {4,3,3} [3,4,3], порядок 1152 {3,4,3} 2{3,4,3} 2{3,4,3} {3,4,3}
15 {3,3,4} 15 {4,3,3} [5,3,3], порядок 14400 {3,3,5} 2{5,3,3} 2{3,3,5} {5,3,3}
75 {3,3,4} 75 {4,3,3} [5,3,3], порядок 14400 5{3,3,5} 10{5,3,3} 10{3,3,5} 5{5,3,3}
75 {3,3,4} 75 {4,3,3} [5,3,3], порядок 14400 {5,3,3} 2{3,3,5} 2{5,3,3} {3,3,5}
300 {3,3,4} 300 {4,3,3} [5,3,3]+, порядок 7200 4{5,3,3} 8{3,3,5} 8{5,3,3} 4{3,3,5}
600 {3,3,4} 600 {4,3,3} [5,3,3], порядок 14400 8{5,3,3} 16{3,3,5} 16{5,3,3} 8{3,3,5}
25 {3,4,3} 25 {3,4,3} [5,3,3], порядок 14400 {5,3,3} 5{5,3,3} 5{3,3,5} {3,3,5}

Существует два различных соединения 75 тессерактов: одно использует те же вершины, что и стодвадцатиячейник, а другое использует те же вершины, что и шестисотъячейник. Отсюда следует, что соответствующие двойственные соединения 75 шестнадцатиячейников также различны.

Самодвойственные звёздчатые соединения
Соединение Симметрия Расположение вершин Расположение ячеек
5 {5,5/2,5}[англ.] [5,3,3]+, порядок 7200 {5,3,3} {3,3,5}
10 {5,5/2,5}[англ.] [5,3,3], порядок 14400 2{5,3,3} 2{3,3,5}
5 {5/2,5,5/2}[англ.] [5,3,3]+, порядок 7200 {5,3,3} {3,3,5}
10 {5/2,5,5/2}[англ.] [5,3,3], порядок 14400 2{5,3,3} 2{3,3,5}
Правильные звёздчатые соединения как двойственные пары
Соединение1 Соединение2 Симметрия Расположение вершин (1) Расположение ячеек (1) Расположение вершин (2) Расположение ячеек (2)
5 {3,5,5/2}[англ.] 5 {5/2,5,3}[англ.] [5,3,3]+, порядок 7200 {5,3,3} {3,3,5} {5,3,3} {3,3,5}
10 {3,5,5/2}[англ.] 10 {5/2,5,3}[англ.] [5,3,3], порядок 14400 2{5,3,3} 2{3,3,5} 2{5,3,3} 2{3,3,5}
5 {5,5/2,3}[англ.] 5 {3,5/2,5}[англ.] [5,3,3]+, порядок 7200 {5,3,3} {3,3,5} {5,3,3} {3,3,5}
10 {5,5/2,3}[англ.] 10 {3,5/2,5}[англ.] [5,3,3], порядок 14400 2{5,3,3} 2{3,3,5} 2{5,3,3} 2{3,3,5}
5 {5/2,3,5}[англ.] 5 {5,3,5/2}[англ.] [5,3,3]+, порядок 7200 {5,3,3} {3,3,5} {5,3,3} {3,3,5}
10 {5/2,3,5}[англ.] 10 {5,3,5/2}[англ.] [5,3,3], порядок 14400 2{5,3,3} 2{3,3,5} 2{5,3,3} 2{3,3,5}

Существует также четырнадцать частично правильных соединений, которые либо вершинно-транзитивны, либо ячеечно-транзитивны, но не одновременно. Семь вершинно-транзитивных частично правильных соединений являются двойственными семи ячейно-транзитивным частично правильным соединениям.

Частично правильные соединения как двойственные пары
Соединение 1
вершинно транзитивны
Соединение 2
ячейно транзитивны[англ.]
Симметрия
2 шестнадцатиячейника [24] 2 тессеракта [4,3,3], порядок 384
100 двадцатичетырёхъячейников 100 двадцатичетырёхъячейников [5,3,3]+, порядок 7200
200 двадцатичетырёхъячейников 200 двадцатичетырёхъячейников [5,3,3], порядок 14400
5 шестисотъячейников 5 стодвадцатиячейников [5,3,3]+, порядок 7200
10 шестисотъячейников 10 стодвадцатиячейников [5,3,3], порядок 14400
Частично правильные звёздчатые соединения как двойственные пары
Соединение1
вершинно транзитивны
Соединение2
ячейно транзитивны[англ.]
Симметрия
5 {3,3,5/2}[англ.] 5 {5/2,3,3}[англ.] [5,3,3]+, порядок 7200
10 {3,3,5/2}[англ.] 10 {5/2,3,3}[англ.] [5,3,3], порядок 14400

Соединения в евклидовом 3-мерном пространстве

[править | править код]

Единственными правильными евклидовыми соединениями сот является бесконечное семейство соединений кубических сот, имеющих общие вершины и грани с другими кубическими сотами. Это соединение может иметь любое число кубических сот. Запись Коксетера — {4,3,4}[d{4,3,4}]{4,3,4}.

Соединения в пятимерном и выше пространствах

[править | править код]

Нет правильных соединений в пятимерном и шестимерном пространствах. Известны три семимерных соединения (16, 240 и 480 7-симплексов[англ.]) и шесть восьмимерных (16, 240 и 480 октерактов или 8-ортоплексов[англ.]). Существует также одно соединение n-мерных симплексов в n-мерном пространстве, при условии, что n на единицу меньше степени двойки, а также два соединения (соединение n-мерных кубов и двойственное ему соединение n-мерных ортоплексов) в n-мерном пространстве, если n является степенью двойки.

Запись Коксетера для этих соединений (где αn = {3n−1}, βn = {3n−2,4}, γn = {4,3n−2}:

  • 7-симплексы: cγ7[16cα7]cβ7, where c = 1, 15 или 30
  • 8-ортоплексы: cγ8[16cβ8]
  • 8-кубы: [16cγ8]cβ8

Общий случай (когда n = 2k and d = 22kk − 1, k = 2, 3, 4, ...):

  • Симплексы: γn−1[dαn−1n−1
  • Ортоплексы: γn[dβn]
  • Гиперкубы: [dγnn

Соединение евклидовых сот

[править | править код]

Известно бесконечное семейство правильных евклидовых соединений сот в размерностях пять и выше — соединение гиперкубических сот, разделяющих вершины и грани с другими гиперболическими сотами. Это соединение может иметь произвольное число гиперболических сот. Запись Коксетера для этих соединений — δn[dδnn where δn = {∞} при n = 2 и {4,3n−3,4} при n ≥ 3.

Абстрактные многогранники

[править | править код]

Понятие абстрактного многогранника возникло при попытке изучать многогранники без привязки их к геометрическому пространству, в котором они находятся. Они включают замощения сферического, евклидова и гиперболического пространств, замощения других многообразий и много других объектов, не имеющих хорошо определённой топологии, но, зато, характеризующихся их "локальной" топологией. Абстрактных многогранников существует бесконечно много в любой размерности. См. атлас для примеров. Некоторые заметные примеры абстрактных правильных многогранников, которые трудно найти где-либо, это одиннадцатиячейник, {3,5,3} и пятидесятисемиячейник[англ.], {5,3,5}, имеющие правильные проективные многогранники в качестве ячеек и вершинных фигур.

Элементами абстрактного многогранника являются его тело (максимальный элемент), грани, рёбра, вершины и нулевой многогранник (пустое множество). Эти абстрактные элементы могут быть отображены в обычное пространство или приняты как геометрические фигуры. Некоторые абстрактные многогранники имеют правильно построенную или правдоподобную реализацию, другие таковой не имеют. Флаг — это множество связанных элементов каждой размерности. Для четырёхмерного многогранника — это тело, грань, ребро этой грани, вершина ребра и нулевой многогранник. Говорят, что абстрактный многогранник является правильным, если его комбинаторные симметрии транзитивны на его флагах, то есть любой его флаг может быть переведён симметрией многогранника в любой другой. Абстрактные правильные многогранники являются активной областью исследований.

Пять таких правильных абстрактных многогранников, которые нельзя реализовать правдоподобно, были приведены Коксетером в его книге Regular Polytopes (1977), а затем в статье Уиллса (J. M. Wills) "The combinatorially regular polyhedra of index 2" (1987) [25]. Они топологически эквивалентны тороиду. Их построение путём расположения n граней около каждой вершины можно продолжать бесконечно, давая замощение гиперболической плоскости.

Многогранник
Средний Ромботриаконтаэдр

Додекододекаэдр

Средний триамбикикосаэдр[англ.]

Битригональный додекаэдр[англ.]

Выемчатый додекаэдр[англ.]
Вершинная фигура {5}, {5/2}
(5.5/2)2
{5}, {5/2}
(5.5/3)3
Грани 30 ромбов
12 пятиугольников
12 пентаграмм
20 шестиугольников
12 пятиугольников
12 пентаграмм
20 гексаграмм
Мозаика
{4, 5}[англ.]

{5, 4}[англ.]

{6, 5}[англ.]

{5, 6}[англ.]

{6, 6}{6, 6}[англ.]
χ −6 −6 −16 −16 −20

Они появляются как двойственные пары:

Примечания

[править | править код]
  1. Coxeter, 1973, с. 129.
  2. McMullen, Schulte, 2002, с. 30.
  3. Johnson, 2012, с. 86.
  4. Coxeter, 1973, с. 120.
  5. Coxeter, 1973, с. 124.
  6. В английской литературе — skew polygon, буквально — косой многоугольник. В русской литературе прижился термин пространственный многоугольник, а термин косой многоугольник соответствует термину skew polyhedron (косой многогранник). В данной статье используется термин косой многогранник для размерностей 4 и выше.
  7. Coxeter, 1973, с. 66-67.
  8. Источник. Дата обращения: 10 января 2016. Архивировано 29 ноября 2014 года.
  9. В английском языке для многогранников используются следующие названия: polyhedra — трёхмерный многогранник, polychoron — четырёхмерный многогранник, polytope — многогранник размерности 5 и выше. В русском языке, как правило, для всех этих видов используется термин многогранник, иногда политоп.
  10. Coxeter (1973), Таблица I: Regular polytopes, (iii) Три правильных многогранника для размерностей n (n>=5), стр. 294–295.
  11. Abstract regular polytopes, p. 162-165 [1] Архивная копия от 15 сентября 2019 на Wayback Machine
  12. Grünbaum, B.; "Regular Polyhedra—Old and New", Aeqationes mathematicae, Vol. 16 (1977), pp 1–20.
  13. Coxeter, 1937, с. 33–62.
  14. Coxeter, Regular and Semi-Regular Polytopes II 2.34
  15. The Symmetry of Things, 2008, Chapter 23 Objects with Primary Symmmetry, Infinite Platonic Polyhedra, pp. 333–335
  16. McMullen, Schulte, 2002, с. 224.
  17. McMullen, Schulte, 2002, с. Section 7E.
  18. Garner, C. W. L. Regular Skew Polyhedra in Hyperbolic Three-Space. Canad. J. Math. 19, 1179–1186, 1967. [2] Архивная копия от 2 апреля 2015 на Wayback Machine Замечание: В статье говорится, что существует 32, но один самодвойственен, так что остаётся 31.
  19. 1 2 3 Coxeter, 1973, с. 296, Table II: Regular honeycombs.
  20. 1 2 3 4 Coxeter, 1999, с. Глава 10.
  21. Coxeter, 1956, с. 213, Table IV.
  22. Coxeter, 1973, с. 305 Table VII.
  23. Richard Klitzing, Uniform compound, stellated icositetrachoron Архивная копия от 4 марта 2016 на Wayback Machine
  24. Richard Klitzing, Uniform compound, demidistesseract Архивная копия от 4 марта 2016 на Wayback Machine
  25. The Regular Polyhedra (of index two) Архивная копия от 4 марта 2016 на Wayback Machine, David A. Richter

Литература

[править | править код]
  • H. S. M. Coxeter. Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III. — Amsterdam: North-Holland Publishing Co., 1956. — P. 155–169.. Перепечатано в H. S. M. Coxeter. Chapter 10, pp. 199–214 // The Beauty of Geometry: Twelve Essays. — Mineola, NY: Dover Publications, Inc., 1999. — ISBN 0-486-40919-8.. См., в частности, таблицы II,III,IV,V, стр. 212–213 книги The Beauty of Geometry.
  • H. S. M. Coxeter. Regular Polytopes. — 3rd. — Dover Publications, Inc., 1973.. См., в частности, таблицы I и II: Regular polytopes and honeycombs, стр. 294–296.
  • Norman W. Johnson. International Conference on Mathematics of Distances and Applications. — July 2–5, 2012, Varna, Bulgaria, 2012. — С. 85–95.
  • H. S. M. Coxeter. Regular Skew Polyhedra in Three and Four Dimensions // Proc. London Math. Soc.. — 1937. — Вып. 43. — С. 33–62.
  • Peter McMullen, Egon Schulte. Abstract Regular Polytopes. — Cambridge University Press, 2002. — Т. 92. — (Encyclopedia of Mathematics and its Applications). — ISBN 0-521-81496-0. — doi:10.1017/CBO9780511546686.
  • D. M. Y. Sommerville. An Introduction to the Geometry of n Dimensions. — New York: Dover Publications, Inc., 1958.. Переиздание 1930, издательства E. P. Dutton. См. главу X: The Regular Polytopes.
  • Visualizing Hyperbolic Honeycombs Roice Nelson, Henry Segerman, (2015) [4]