Усечённый куб (Rvyc~uudw trQ)
Усечённый куб | |||
---|---|---|---|
| |||
Тип | архимедово тело | ||
Свойства | выпуклый, изогональный | ||
Комбинаторика | |||
Элементы |
|
||
Грани |
8 треугольников 6 восьмиугольников |
||
Конфигурация вершины | 3.82 | ||
Двойственный многогранник | триакисоктаэдр | ||
Классификация | |||
Обозначения | tC | ||
Символ Шлефли | t{4,3} | ||
Группа симметрии | Oh (октаэдрическая) | ||
Медиафайлы на Викискладе |
Усечённый куб[1][2][3] — полуправильный многогранник (архимедово тело) с 14 гранями, составленный из 8 правильных треугольников и 6 правильных восьмиугольников.
В каждой из его 24 одинаковых вершин сходятся две восьмиугольных грани и одна треугольная. Телесный угол при вершине равен
Усечённый куб имеет 36 рёбер равной длины. При 12 рёбрах (между двумя восьмиугольными гранями) двугранные углы прямые, как в кубе; при 24 рёбрах (между треугольной и восьмиугольной гранями) двугранные углы тупые и равны как в кубооктаэдре.
Усечённый куб можно получить из обычного куба, «срезав» с того 8 правильных треугольных пирамид, — либо как пересечение имеющих общий центр куба и октаэдра.
Метрические характеристики
[править | править код]Если усечённый куб имеет ребро длины , его площадь поверхности и объём выражаются как
Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер в их серединах) —
Вписать в усечённый куб сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри усечённого куба с ребром (она будет касаться только всех восьмиугольных граней в их центрах), равен
Расстояние от центра многогранника до любой треугольной грани превосходит и равно
В координатах
[править | править код]Усечённый куб можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными перестановками чисел
Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер.
Заполнение пространства
[править | править код]С помощью октаэдров и усечённых кубов можно замостить трёхмерное пространство без промежутков и наложений (см. иллюстрации).
Примечания
[править | править код]- ↑ Веннинджер, 1974, с. 20, 32.
- ↑ Энциклопедия элементарной математики, 1963, с. 437, 434.
- ↑ Люстерник, 1956, с. 183.
Ссылки
[править | править код]- Weisstein, Eric W. Усечённый куб (англ.) на сайте Wolfram MathWorld.
Литература
[править | править код]- М. Веннинджер. Модели многогранников. — Мир, 1974.
- Многоугольники и многогранники // Энциклопедия элементарной математики. Книга четвёртая. Геометрия / Под ред. П. С. Александрова, А. И. Маркушевича, А. Я. Хинчина. — М.: Государственное издательство физико-математической литературы, 1963. — С. 382—447.
- Л. А. Люстерник. Выпуклые фигуры и многогранники. — М.: Государственное издательство технико-теоретической литературы, 1956.