Октаэдральные соты порядка 4 (Ktmgz;jgl,udy vkmd hkjx;tg 4)

Перейти к навигации Перейти к поиску
Октаэдральные соты порядка 4

Перспективная проекция
в модели Пуанкаре
Тип Гиперболические правильные соты
Паракомпактные однородные соты[англ.]
Символы Шлефли|{3,4,4}
{3,41,1}
Диаграммы
Коксетера — Дынкина
node_13node4node4node
node_13nodesplit1-44nodesnode_13node4node4node_h0
node_1split1nodes2a2b-crossnodesnode_13node4node_h04node
branchusplit2node_1split1branchunode_13node4node_g4sgnode_g
Ячейки октаэдр {3,4}
Грани треугольник {3}
Краевая фигура квадрат {4}
Вершинная фигура Квадратный паркет, {4,4}
Двойственные соты Квадратные мозаичные соты[англ.], {4,4,3}
Группы Коксетера [4,4,3]
[3,41,1]
Свойства Правильные

В гиперболическом пространстве размерности 3 восьмиугольные соты порядка 4 — правильные паракомпактные соты. Они называются паракомпактными, поскольку имеют бесконечные вершинные фигуры со всеми вершинами как идеальные точки на бесконечности. Если многогранник задан символом Шлефли {3,4,4}, он имеет четыре октаэдра {3,4} вокруг каждого ребра и бесконечное число октаэдров вокруг каждой вершины в квадратном паркете {4,4}, в качестве расположения вершин[англ.][1].

Геометрические соты — это заполняющие пространство многогранники или ячейки большей размерности. Заполнение происходит так, что между ними не остаётся зазоров. Это пример более общего математического понятия мозаики или замощения в пространстве любой размерности.

Соты обычно строятся в обычном евклидовом («плоском») пространстве подобно выпуклым однородным сотам[англ.]. Их можно построить также в неевклидовых пространствах, такие как однородные гиперболические соты[англ.]. Любой конечный однородный многогранник может быть спроецирован на его описанную сферу для образования однородных сот в сферическом пространстве.

Построение с половинной симметрией, [3,4,4,1+], существует как {3,41,1}, с чередованием двух видов (цветов) октаэдральных ячеек. node_13node4node4node_h0node_13nodesplit1-44nodes. Второе построение с половинной симметрией, [3,4,1+,4]: node_13node4node_h04nodenode_1split1nodes2a2b-crossnodes. Более высокий индекс симметрии, [3,4,4*], индекс 8, существует с пирамидальной фундаментальной областью, [((3,∞,3)),((3,∞,3))]: branchusplit2node_1split1branchu.

Эти соты содержат node_1split1branchu, node_13nodeultranode, которые замощают 2-гиперциклические поверхности наподобие паракомпактных мозаик node_1split1branchlabelinfin или node_13nodeinfinnode

Связанные многогранники и соты

[править | править код]

Многогранник входит в 15 правильных гиперболических сот в 3-мерном пространстве, 11 из которых, подобно этим сотам, паракомпактны и имеют бесконечные ячейки или вершинные фигуры.

Имеется пятнадцать однородных сот[англ.] в [4,4,3] семействе групп Коксетера, включая эту однородную форму.

Семейство сот [4,4,3]
{4,4,3}
node_14node4node3node
r{4,4,3}
node4node_14node3node
t{4,4,3}
node_14node_14node3node
rr{4,4,3}
node_14node4node_13node
t0,3{4,4,3}
node_14node4node3node_1
tr{4,4,3}
node_14node_14node_13node
t0,1,3{4,4,3}
node_14node_14node3node_1
t0,1,2,3{4,4,3}
node_14node_14node_13node_1
{3,4,4}
node_13node4node4node
r{3,4,4}
node3node_14node4node
t{3,4,4}
node_13node_14node4node
rr{3,4,4}
node_13node4node_14node
2t{3,4,4}
node3node_14node_14node
tr{3,4,4}
node_13node_14node_14node
t0,1,3{3,4,4}
node_13node_14node4node_1
t0,1,2,3{3,4,4}
node_13node_14node_14node_1

Соты являются частью последовательности сот с вершинной фигурой в виде квадратного паркета:

Соты являются частью последовательности правильных четырёхмерных многогранников и сот с октаэдральными ячейками[англ.].

Спрямлённые восьмиугольные соты порядка 4

[править | править код]
Спрямлённые восьмиугольные соты порядка 4
Тип Паракомпактные однородные соты[англ.]
Символы Шлефли r{3,4,4} or t1{3,4,4}
Диаграммы
Коксетера — Дынкина
node3node_14node4node
node3node_1split1-44nodesnode3node_14node4node_h0
nodesplit1nodes_112a2b-crossnodesnode3node_14node_h04node
branchu_11split2nodesplit1branchu_11node3node_14node_g4sgnode_g
Ячейки r{4,3}
{4,4}
Грани треугольные {3}
квадратные {4}
Вершинная фигура
Группы Коксетера [4,4,3]
Свойства вершинно транзитивны

Спрямлённые восьмиугольные соты порядка 4, t1{3,4,4}, node3node_14node4node имеют фасеты в виде кубооктаэдра и квадратного паркета, с квадратной пирамидой в качестве вершинной фигуры.

Усечённые восьмиугольные соты порядка 4

[править | править код]
Усечённые восьмиугольные соты порядка 4
Тип Паракомпактные однородные соты[англ.]
Символы Шлефли t{3,4,4} или t0,1{3,4,4}
Диаграммы
Коксетера — Дынкина
node_13node_14node4node
node_13node_1split1-44nodesnode_13node_14node4node_h0
node_1split1nodes_112a2b-crossnodesnode_13node_14node_h04node
branchu_11split2node_1split1branchu_11node_13node_14node_g4sgnode_g
Ячейки t{3,4}
{4,4}
Грани квадратные {4}
шестиугольные {6}
Вершинная фигура
Группы Коксетера [4,4,3]
Свойства вершинно транзитивны

Усечённые восьмиугольные соты порядка 4, t0,1{3,4,4}, node_13node_14node4node имеют фасеты в виде усечённого октаэдра и квадратного паркета с квадратной пирамидой в качестве вершинной фигуры.

Скошенные восьмиугольные соты порядка 4

[править | править код]
Скошенные восьмиугольные соты порядка 4
Тип Паракомпактные однородные соты[англ.]
Символы Шлефли rr{3,4,4} или t0,2{3,4,4}
s2{3,4,4}
Диаграммы
Коксетера — Дынкина
node_13node4node_14node
node_h3node_h4node_14node
node_13nodesplit1-44nodes_11node_13node4node_14node_h0
Ячейки rr{3,4}
r{4,4}
Грани треугольник {3}
квадрат {4}
Вершинная фигура
треугольная призма
Группы Коксетера [4,4,3]
Свойства вершинно транзитивны

Скошенные восьмиугольные соты порядка 4, t0,2{3,4,4}, node_13node4node_14node имеют грани в виде ромбокубооктаэдра и квадратного паркета с вершинной фигурой в виде треугольной призмы.

Скошено-усечённые восьмиугольные соты порядка 4

[править | править код]
Скошено-усечённые восьмиугольные соты порядка 4
Тип Паракомпактные однородные соты[англ.]
Символы Шлефли tr{3,4,4} или t0,1,2{3,4,4}
Диаграммы
Коксетера — Дынкина
node_13node_14node_14node
node_13node_1split1-44nodes_11node_13node_14node_14node_h0
Ячейки tr{3,4}
r{4,4}
Грани квадратные {4}
шестиугольные {6}
восьмиугольные {8}
Вершинная фигура
тетраэдр
Группы Коксетера [4,4,3]
Свойства вершинно транзитивны

Скошено-усечённые восьмиугольные соты порядка 4, t0,1,2{3,4,4}, node_13node_14node_14node имеют фасеты в виде усечённого кубооктаэдра и квадратного паркета с тетраэдром в качестве вершинной фигуры.

Струг-усечённые восьмиугольные соты порядка 4

[править | править код]
Струг-усечённые восьмиугольные соты порядка 4
Тип Паракомпактные однородные соты[англ.]
Символы Шлефли t0,1,3{3,4,4}
Диаграммы
Коксетера — Дынкина
node_13node_14node4node_1
node_1split1nodes_112a2b-crossnodes_11node_13node_14node_h04node_1
Ячейки t{3,4}
rr{4,4}
Грани треугольник {3}
квадрат {4}
восьмиугольные {8}
Вершинная фигура
квадратная пирамида
Группы Коксетера [4,4,3]
Свойства вершинно транзитивны

Струг-усечённые восьмиугольные соты порядка 4, t0,1,3{3,4,4}, node_13node_14node4node_1 имеют фасеты в виде усечённого октаэдра и квадратного паркета с квадратной пирамидой в качестве вершинной фигуры.

Плосконосые восьмиугольные соты порядка 4

[править | править код]
Плосконосые восьмиугольные соты порядка 4
Тип Паракомпактные равнобедренные соты
Символы Шлефли s{3,4,4}
Диаграммы
Коксетера — Дынкина
node_h3node_h4node4node
node_h3node_hsplit1-44nodesnode_h3node_h4node4node_h0
nodesplit1-44nodes_hhsplit2node_h
node_hsplit1nodes_hh2a2b-crossnodesnode_h3node_h4node_h04node
branchu_hhsplit2node_hsplit1branchu_hhnode_h3node_h4node_g4sgnode_g
Ячейки квадратный паркет
икосаэдр
квадратная пирамида
Грани {3}
{4}
Вершинная фигура
Группы Коксетера [4,4,3+]
[41,1,3+]
[(4,4,(3,3)+)]
Свойства вершинно транзитивны

Плосконосые восьмиугольные соты порядка 4, s{3,4,4}, имеют диаграмму Коксетера — Дынкина node_h3node_h4node4node. Они являются равнобедренными сотами[англ.] с квадратными пирамидами, квадратными мозаиками и икосаэдрами.

Примечания

[править | править код]
  1. Coxeter, 1999, с. Chapter 10, Table III.

Литература

[править | править код]
  • Coxeter. Tables I and II: Regular polytopes and honeycombs // Regular Polytopes[англ.]. — 3rd. ed.. — Dover Publications, 1973. — С. 294–296. — ISBN 0-486-61480-8.
  • Coxeter. Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V // The Beauty of Geometry: Twelve Essays. — Dover Publications, 1999. — С. 212-213. — ISBN 0-486-40919-8.
  • Jeffrey R. Weeks. Chapter 16-17: Geometries on Three-manifolds I,II // The Shape of Space. — 2nd. — 2002. — ISBN 0-8247-0709-5.
  • N.W. Johnson. Uniform Polytopes. — (Manuscript).
    • N.W. Johnson. The Theory of Uniform Polytopes and Honeycombs. — University of Toronto, 1966. — (Ph.D. Dissertation).
    • N.W. Johnson. Chapter 13: Hyperbolic Coxeter groups // Geometries and Transformations. — 2015.
    • Norman W. Johnson, Asia Ivic Weiss. Quadratic Integers and Coxeter Groups // Can. J. Math.. — 1999. — Т. 51, вып. 6. — С. 1307–1336.