QR-алгоритм (QR-glikjnmb)
QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел и собственных векторов матрицы. Был разработан в конце 1950-х годов независимо В. Н. Кублановской и Дж. Фрэнсисом[англ.].
Алгоритм
[править | править код]Пусть A — вещественная матрица, для которой мы хотим найти собственные числа и векторы. Положим A0=A. На k-м шаге (начиная с k = 0) вычислим QR-разложение Ak=QkRk, где Qk — ортогональная матрица (то есть QkT = Qk−1), а Rk — верхняя треугольная матрица. Затем мы определяем Ak+1 = RkQk.
Заметим, что
то есть все матрицы Ak являются подобными, то есть их собственные значения равны.
Пусть все диагональные миноры матрицы A не вырождены. Тогда последовательность матриц Ak при сходится по форме к клеточному правому треугольному виду, соответствующему клеткам с одинаковыми по модулю собственными значениями.[1]
Для того, чтобы получить собственные векторы матрицы, нужно перемножить все матрицы Qk.
Алгоритм считается вычислительно устойчивым, т. к. производится ортогональными преобразованиями подобия.
Доказательство для симметричной положительно определённой матрицы
[править | править код]Будем считать, что собственные числа положительно-определённой матрицы A упорядочены по убыванию:
Пусть
а S — матрица, составленная из собственных векторов матрицы A. Тогда, матрица A может быть записана в виде спектрального разложения
Найдём выражение для степеней исходной матрицы через матрицы Qk и Rk. С одной стороны, по определению QR-алгоритма:
Применяя это соотношение рекурсивно, получим:
Введя следующие обозначения:
получим
С другой стороны:
Приравнивая правые части последних двух формул, получим:
Предположим, что существует LU-разложение матрицы ST:
тогда
Умножим справа на обратную к U матрицу, а затем — на обратную к Λk:
Можно показать, что
При без ограничения общности можно считать, что на диагонали матрицы L стоят единицы, поэтому
Обозначим
причём матрица Pk является верхнетреугольной, как произведение верхнетреугольных и диагональных матриц.
Таким образом, мы доказали, что
- .
Из единственности QR-разложения следует, что если произведение ортогональной и треугольной матрицы сходится к ортогональной матрице, то треугольная матрица сходится к единичной матрице. Из сказанного следует, что
То есть матрицы Sk сходятся к матрице собственных векторов матрицы A.
Так как
то
Переходя к пределу, получим:
Итак, мы доказали, что QR-алгоритм позволяет решить полную проблему собственных значений для симметричной положительно-определённой матрицы.
Реализация QR-алгоритма
[править | править код]При определённых условиях последовательность матриц сходится к треугольной матрице, разложению Шура матрицы . В этом случае собственные числа треугольной матрицы располагаются на её диагонали, и задача нахождения собственных чисел считается решённой. В тестах на сходимость не практично требовать точных нулей в нулевой части матрицы, но можно воспользоваться теоремой о кругах Гершгорина, задающей пределы ошибок.
В исходном состоянии матрицы (без дополнительных преобразований) стоимость итераций относительно высока. Стоимость алгоритма можно уменьшить, сначала приведя матрицу к форме верхней матрицы Хессенберга (стоимость получения которой методом, основанном на преобразовании Хаусхолдера, оценивается как арифметических операций), и затем используя конечную последовательность ортогональных преобразований подобия. Данный алгоритм чем-то похож на двухсторонюю QR-декомпозицию. (В обычной QR-декомпозиции матрица отражений Хаусхолдера умножается на исходную только слева, тогда как в случае использования формы Хессенберга матрица отражений умножается на исходную и слева, и справа.) Нахождение QR-декомпозиции верхней матрицы Хессенберга оценивается как арифметических операций. Из-за того, что форма матрицы Хессенберга почти верхнетреугольная (у неё только один поддиагональный элемент не равен нулю), удается сразу снизить число итераций требуемых для схождения QR-алгоритма.
В случае, если исходная матрица симметричная, верхняя матрица Хессенберга также симметричная и поэтому является трехдиагональной. Этим же свойством обладает вся последовательность матриц . В этом случае стоимость процедуры оценивается как арифметических операций с использованием метода, основанного на преобразовании Хаусхолдера. Нахождение QR-разложения симметричной трехдиагональной матрицы оценивается как операций.
Скорость сходимости зависит от степени разделения собственных чисел, и в практической реализации в явном или неявном виде используются «сдвиги» для усиления разделения собственных чисел и для ускорения сходимости. В типичном виде для симметричных матриц QR-алгоритм точно находит одно собственное число (уменьшая размерность матрицы) за одну или две итерации, что делает этот подход как эффективным, так и надежным.
Реализация QR-алгоритма в неявном виде
[править | править код]В современной вычислительной практике QR-алгоритм реализуется с использованием его неявной версии, что упрощает добавление множественных «сдвигов». Исходно матрица приводится к форме верхней матрицы Хессенберга , так же как и в явной версии. Затем, на каждом шаге первая колонка преобразуется через малоразмерное преобразование подобия Хаусхолдера к первой колонке (или ), где — это полином степени , который определяет стратегию «сдвигов» (обычно , где и — это два собственных числа остаточной подматрицы размера 2×2, это так называемый неявный двойной сдвиг). Затем последовательные преобразования Хаусхолдера размерности производятся с целью вернуть рабочую матрицу к форме верхней матрицы Хессенберга.
Примечания
[править | править код]- ↑ Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. — 3-е изд. — М.: БИНОМ, Лаборатория знаний, 2004. — С. 321. — 636 с. — ISBN 5-94774-175-X.