Фундаментальная группа (Sru;gbyumgl,ugx ijrhhg)

Перейти к навигации Перейти к поиску

Фундамента́льная гру́ппа — одна из простейших конструкций в алгебраической топологии. Сопоставляется группа всякому связному топологическому пространству. Для подмножеств плоскости эта группа измеряет количество «дырок». Наличие «дырки» определяется невозможностью непрерывно продеформировать (стянуть) некоторую замкнутую кривую в точку.

Фундаментальная группа пространства с отмеченной точкой обычно обозначается или , последнее обозначение применимо для связных пространств. Тривиальность фундаментальной группы обычно записывается как , хотя обозначение более уместно.

Определение[править | править код]

Пусть  — топологическое пространство с отмеченной точкой . Рассмотрим множество петель в из ; то есть множество непрерывных отображений , таких что . Две петли и считаются эквивалентными, если они гомотопны друг другу в классе петель, то есть найдется соединяющая их гомотопия , удовлетворяющая свойству . Соответствующие классы эквивалентности (обозначаются ) называются гомотопическими классами. Произведением двух петель называется петля, определяемая их последовательным прохождением:

Произведением двух гомотопических классов и называется гомотопический класс произведения петель. Можно показать, что он не зависит от выбора петель в классах. Множество гомотопических классов петель с таким произведением становится группой. Эта группа и называется фундаментальной группой пространства с отмеченной точкой и обозначается .

Комментарии[править | править код]

  • Про можно думать как о паре пространств .
  • Единицей группы является класс тождественной, или неподвижной петли, обратным элементом — класс петли, пройденной в обратном направлении.
  • Если  — линейно связное пространство, то с точностью до изоморфизма фундаментальная группа не зависит от отмеченной точки. Поэтому для таких пространств можно писать вместо не боясь вызвать путаницу. Однако для двух точек канонический изоморфизм между и существует лишь если фундаментальная группа абелева.

Связанные определения[править | править код]

  • Каждое непрерывное отображение пунктированных пространств индуцирует гомоморфизм , определяемый формулой . Таким образом, взятие фундаментальной группы вместе с описанной операцией образует функтор .
  • Пространство называется односвязным, если оно линейно связно и группа тривиальна (состоит только из единицы).

Примеры[править | править код]

  • В есть только один гомотопический класс петель. Следовательно, фундаментальная группа тривиальна, . То же верно и для любого пространства — выпуклого подмножества .
  • В окружности , каждый гомотопический класс состоит из петель, которые навиваются на окружность заданное число раз, которое может быть положительным или отрицательным в зависимости от направления. Следовательно, фундаментальная группа окружности изоморфна аддитивной группе целых чисел .
  • Фундаментальная группа -мерной сферы тривиальна при всех .
  • Фундаментальная группа восьмёрки неабелева — это свободное произведение . Справедлив более общий результат, следующий из теоремы ван Кампена: если и  — линейно связные пространства и локально односвязны, то фундаментальная группа их букета (склейки по выделенной точке) изоморфна свободному произведению их фундаментальных групп:
  • Фундаментальная группа плоскости c выколотыми точками — свободная группа с порождающими.
  • Фундаментальная группа ориентированной замкнутой поверхности рода может быть задана образующими с единственным соотношением: .

Свойства[править | править код]

  • Если  — ретракт , содержащий отмеченную точку , то гомоморфизм , индуцированный вложением , инъективен.
    • В частности, фундаментальная группа компоненты линейной связности , содержащей отмеченную точку, изоморфна фундаментальной группе всего .
    • Если  — строгий деформационный ретракт , то является изоморфизмом.
  • сохраняет произведение: для любой пары топологических пространств с отмеченными точками и существует изоморфизм
естественный по и .
  • Теорема ван Кампена: Если  — объединение линейно связных открытых множеств , каждое из которых содержит отмеченную точку , и если каждое пересечение линейно связно, то гомоморфизм , индуцированный вложениями , сюрьективен. Кроме того, если каждое пересечение линейно связно, то ядро гомоморфизма  — это наименьшая нормальная подгруппа , содержащая все элементы вида (где индуцирован вложением ), а потому индуцирует изоморфизм (первая теорема об изоморфизме).[1] В частности,
    • сохраняет копроизведения: естественно по всем .
    • (случай двух ): условие для тройных пересечений становится излишним, и получается, что , что является ограниченной (случаем линейно связного ) формой сохранения толчков.
  • Произвольная конечно заданная группа может быть реализована как фундаментальная группа замкнутого 4-мерного многообразия.
  • Фундаментальная группа пространства действует сдвигами на универсальном накрытии этого пространства (если универсальное накрытие определено).

Вариации и обобщения[править | править код]

  • Фундаментальная группа является первой из гомотопических групп.
  • Фундаментальным группоидом[en] пространства называют группоид , объектами которого являются точки , а морфизмами — гомотопические классы путей с композицией путей. При этом , и если линейно связно, то вложение является эквивалентностью категорий.

Примечания[править | править код]

  1. А. Хатчер, Алгебраическая топология, М.: МЦНМО, 2011.

Литература[править | править код]

  • Васильев В. А. Введение в топологию. — М.: ФАЗИС, 1997. — 132 с. — ISBN 5-7036-0036-7.
  • Матвеев С. В. Фундаментальная группа: Лекции по курсу «Топология». — Челябинск: ЧелГУ, 2001. — 16 с. (есть pdf)
  • Фоменко Анатолий Тимофеевич. Дифференциальная геометрия и топология (доп. главы). — R&C dinamic, 1999. — 250 с.