Эта статья входит в число избранных

Международная космическая станция (By';rugjk;ugx tkvbncyvtgx vmguenx)

Перейти к навигации Перейти к поиску
Международная космическая станция

Флаг БельгииФлаг ГерманииФлаг ДанииФлаг ИспанииФлаг ИталииФлаг КанадыФлаг НидерландовФлаг НорвегииФлаг РоссииФлаг СШАФлаг ФранцииФлаг ШвейцарииФлаг ШвецииФлаг Японии
Фото МКС: 8 декабря 2021 года

Эмблема МКС
Общие сведения
Тип КА Орбитальная станция
Начало эксплуатации 20 ноября 1998 года
Суток на орбите 9498 (на 21.11.2024)
Технические характеристики
Масса 440 075 кг[1]
Длина 109 м[2]
Ширина 73,15 м (с фермами)
Высота 27,4 м (на 22.02.2007)[3]
Жилой объём 388 м³[4]
Давление 1 атм.[5]
Температура ~26,9 °C (в среднем)[5][6]
Электрическая мощность солнечных батарей 75-90 кВт[4]
Полётные данные станции
Перигей 415 км[7]
Апогей 422 км[7]
Наклонение 51,63°[8]
Высота орбиты 418,2 км[9]
Орбитальная скорость ~7,7 км/с (4,8 миль/с)[4][нет в источнике]
Период обращения ~90 мин.[4]
Оборотов в день 16[4]
Полётные данные экипажа
Членов экипажа
  • постоянный — до 7
  • временный — до 13[10]
  • на 11.09.2024 — 12
Обитаема с 2 ноября 2000 года
Дней обитания 8785 (на 21.11.2024)
Текущая экспедиция МКС-71
Пристыкованные корабли
Пилотируемые корабли Союз МС-25,
SpaceX Crew-8,
Boeing CFT,
Союз МС-26
Грузовые корабли Прогресс МС-27,
Прогресс МС-28,
Cygnus CRS NG-21
Основные модули станции
Флаг России Российский сегмент МКС:
«Заря», «Звезда», «Рассвет», «Поиск», «Наука», «Причал»
Флаг США Американский сегмент МКС:
«Юнити», «Дестини», «Квест», «Гармония», «Транквилити», «Купол», BEAM, «Леонардо», «Бишоп», Флаг ЕС «Коламбус», Флаг Японии «Кибо»
Строение МКС
Прямая WEB-трансляция с борта МКС

Междунаро́дная косми́ческая ста́нция, сокр. МКС (англ. International Space Station, сокр. ISS) — пилотируемая орбитальная станция, используемая как многоцелевой космический исследовательский комплекс; эксплуатируется с конца 1998 года по настоящее время (странами согласована эксплуатация по 2024 год включительно, рассматривается продление срока работы до 2028 или 2030 года). МКС — совместный международный проект, в котором участвуют 14 стран: Россия, США, Япония, Канада и входящие в Европейское космическое агентство Бельгия, Германия, Дания, Испания, Италия, Нидерланды, Норвегия, Франция, Швейцария, Швеция[11][12][13] (первоначально в составе участников были Бразилия[Комм 1] и Великобритания[Комм 2]).

МКС внесена в Книгу рекордов Гиннесса как самый дорогой объект, построенный человеком[14]. Общая стоимость создания станции составляет более 150 миллиардов долларов[15].

Управление МКС осуществляется: российским сегментом — из Центра управления космическими полётами в Королёве, американским сегментом — из Центра управления полётами имени Линдона Джонсона в Хьюстоне. Управление лабораторных модулей — европейского «Коламбус» и японского «Кибо» — контролируют Центры управления Европейского космического агентства (Оберпфаффенхофен, Германия) и Японского агентства аэрокосмических исследований (г. Цукуба)[16]. Между Центрами идёт постоянный обмен информацией.

Текущий экипаж

[править | править код]

На 11 сентября 2024 года на МКС находятся:

Командир станции с 10 марта 2024 года — Олег Кононенко[17].

История создания

[править | править код]

В 1984 году Президент США Рональд Рейган объявил о начале работ по созданию международной орбитальной станции[18]; в 1988 году проектируемая станция была названа «Freedom» («Свобода»). В то время это был совместный проект США, ЕКА, Канады и Японии. Планировалась крупногабаритная управляемая станция, модули которой будут доставляться по очереди на орбиту кораблями «Спейс шаттл» с 1981 года. Но к началу 1990-х годов выяснилось, что США и страны запада не имеют технологий и не могут воплотить в жизнь проект без России, и было принято решение создать станцию совместно с Россией[19]. Был предложен проект корабля-спасателя для экипажа разработанного на базе Союза-ТМ. [20]

Россия, унаследовавшая от СССР опыт создания и выведения на орбиту орбитальных станций «Салют» (1971—1991), а также станции «Мир» (1986—2001), планировала в начале 1990-х создание станции «Мир-2», но в связи с экономическими трудностями проект был приостановлен.

17 июня 1992 года Россия и США заключили соглашение о сотрудничестве в исследовании космоса. В соответствии с ним Российское космическое агентство (РКА) и НАСА разработали совместную программу «Мир — Шаттл». Эта программа предусматривала полёты американских многоразовых кораблей «Спейс шаттл» к российской космической станции «Мир», включение российских космонавтов в экипажи американских шаттлов и американских астронавтов — в экипажи кораблей «Союз» и станции «Мир».

В ходе реализации программы «Мир — Шаттл» родилась идея объединения национальных программ создания орбитальных станций.

В марте 1993 года генеральный директор РКА Юрий Коптев и генеральный конструктор НПО «Энергия» Юрий Семёнов предложили руководителю НАСА Дэниелу Голдину[англ.] создать Международную космическую станцию.

При этом в 1993 году в США многие политики были против строительства космической орбитальной станции — в июне 1993 в Конгрессе США обсуждалось предложение об отказе от создания Международной космической станции; это предложение не было принято с перевесом только в один голос: 215 голосов за отказ, 216 голосов за строительство станции. Рассматривались варианты сооружения станциям по вариантам A,B,C. Был выбран вариант A (Альфа) [20]


2 сентября 1993 года вице-президент США Альберт Гор и председатель Совета министров России Виктор Черномырдин объявили о новом проекте «подлинно международной космической станции». С этого момента официальным названием станции стало «Международная космическая станция»[19], хотя параллельно использовалось и неофициальное — космическая станция «Альфа»[21]. 1 ноября 1993 РКА и НАСА подписали «Детальный план работ по Международной космической станции».

МКС, июль 1999 года. Вверху модуль «Юнити», внизу, с развёрнутыми панелями солнечных батарей — «Заря»
МКС, июль 2000 года. Пристыкованные модули сверху вниз: «Юнити», «Заря», «Звезда» и корабль «Прогресс»
МКС, апрель 2002 года
МКС, август 2005 года
МКС, сентябрь 2006 года
МКС, август 2007 года
МКС, июнь 2008 года
МКС, март 2011 года

23 июня 1994 года Ю. Коптев и Д. Голдин подписали в Вашингтоне «Временное соглашение по проведению работ, ведущих к российскому партнёрству в Постоянной пилотируемой гражданской космической станции», в рамках которого Россия официально подключилась к работам над МКС[22]. В ноябре 1994 в Москве состоялись первые консультации российского и американского космических агентств; были заключены контракты с фирмами — участницами проекта — «Боинг» и РКК «Энергия».

В марте 1995 года в Космическом центре им. Л. Джонсона в Хьюстоне был утверждён эскизный проект станции. В 1996 году была утверждена конфигурация станции, состоящая из двух сегментов — российского (модернизированный вариант «Мир-2») и американского (с участием Канады, Японии, Италии, стран — членов Европейского космического агентства и Бразилии).

Последовательность сборки МКС

[править | править код]

20 ноября 1998 года был выведен на орбиту первый элемент МКС — функционально-грузовой блок «Заря», который был построен в России по заказу и за деньги НАСА. Запуск был произведён при помощи Российской ракеты «Протон-К» (ФГБ). Модуль входит в состав Российского сегмента МКС, в то же время является собственностью НАСА.

7 декабря 1998 года шаттл «Индевор» пристыковал к модулю «Заря» американский модуль «Юнити».

10 декабря 1998 года был открыт люк в модуль «Юнити», и Роберт Кабана и Сергей Крикалёв, как представители США и России, вошли внутрь станции.

26 июля 2000 года к функционально-грузовому блоку «Заря» был пристыкован служебный модуль (СМ) «Звезда».

2 ноября 2000 года транспортный пилотируемый корабль (ТПК) «Союз ТМ-31» доставил на борт МКС экипаж первой основной экспедиции.

7 февраля 2001 года экипажем шаттла «Атлантис» в ходе миссии STS-98 к модулю «Юнити» присоединён американский научный модуль «Дестини».

18 апреля 2005 года глава НАСА Майкл Гриффин на слушаниях сенатской комиссии по космосу и науке заявил о необходимости временного сокращения научных исследований на американском сегменте станции. Это требовалось для высвобождения средств на форсированную разработку и постройку нового пилотируемого корабля (CEV). Новый пилотируемый корабль был необходим для обеспечения независимого доступа США к станции, поскольку после катастрофы «Колумбии» 1 февраля 2003 года США временно не имели такого доступа к станции до июля 2005 года, когда возобновились полёты шаттлов. После катастрофы «Колумбии» количество членов долговременных экипажей МКС было сокращено с трёх до двух. Это было связано с тем, что снабжение станции материалами, необходимыми для жизнедеятельности экипажа, осуществлялось только российскими грузовыми кораблями «Прогресс» и его грузоподъёмности было недостаточно для полноценного снабжения астронавтов.

26 июля 2005 года полёты шаттлов возобновились успешным стартом шаттла «Дискавери». До планируемого конца эксплуатации шаттлов (2010 год) предусматривалось совершить 17 полётов. В ходе этих полётов на МКС было доставлено оборудование и модули, необходимые как для достройки станции, так и для модернизации части оборудования, в частности — канадского манипулятора.

Второй полёт шаттла после катастрофы «Колумбии» (Шаттл «Дискавери» STS-121) состоялся в июле 2006 года. На этом шаттле на МКС прибыл немецкий космонавт Томас Райтер, который присоединился к экипажу долговременной экспедиции МКС-13. Таким образом, в долговременной экспедиции на МКС после трёхлетнего перерыва вновь стали работать три космонавта.

Стартовавший 9 сентября 2006 года челнок «Атлантис» доставил на МКС два сегмента ферменных конструкций МКС, две панели солнечных батарей, а также радиаторы системы терморегулирования американского сегмента.

23 октября 2007 года на борту шаттла «Дискавери» прибыл американский модуль «Гармония», его временно пристыковали к модулю «Юнити». После перестыковки 14 ноября 2007 года модуль «Гармония» был на постоянной основе соединён с модулем «Дестини». Построение основного американского сегмента МКС завершилось.

В 2008 году станция увеличилась на две лаборатории: 11 февраля был пристыкован модуль «Коламбус», созданный по заказу Европейского космического агентства, а 14 марта и 4 июня были пристыкованы два из трёх основных отсеков лабораторного модуля «Кибо», разработанного Японским агентством аэрокосмических исследований — герметичная секция «Экспериментального грузового отсека» (ELM PS) и герметичный отсек (PM).

В 2008—2009 гг. начата эксплуатация новых транспортных кораблей: «ATV» (Европейское космическое агентство, первый запуск состоялся 9 марта 2008 года, полезный груз — 7,7 тонны, один полёт в год) и «H-II Transport Vehicle» (Японское агентство аэрокосмических исследований; первый запуск состоялся 10 сентября 2009 года, полезный груз — 6 тонн, один полёт в год).

С 29 мая 2009 года начал работу долговременный экипаж МКС-20 численностью шесть человек, доставленный в два приёма: первые три человека прибыли на «Союз ТМА-14», затем к ним присоединился экипаж «Союз ТМА-15»[23]. В немалой степени увеличение экипажа произошло благодаря тому, что увеличились возможности доставки грузов на станцию.

12 ноября 2009 года к станции пристыкован малый исследовательский модуль МИМ-2, разработанный на базе стыковочного узла «Пирс» и незадолго до запуска получивший название «Поиск». Это был четвёртый модуль российского сегмента станции. Возможности модуля позволяют производить на нём некоторые научные эксперименты[24], а также одновременно выполнять функцию причала для российских кораблей[25].

18 мая 2010 года к МКС был успешно пристыкован российский малый исследовательский модуль «Рассвет» (МИМ-1). Операция по пристыковке «Рассвета» к российскому функционально-грузовому блоку «Заря» была осуществлена манипулятором американского космического челнока «Атлантис», а затем манипулятором МКС[26][27].

16 апреля 2016 года к МКС (к модулю «Транквилити») был пристыкован модуль BEAM, разработанный частной космической компанией Bigelow Aerospace, — первый модуль МКС, разработанный частной фирмой[28]. Модуль используется для проведения экспериментов по измерению уровня радиации и воздействия микрочастиц[29].

26 июля 2021 года в 10:56 UTC от МКС был отстыкован модуль «Пирс».

29 июля 2021 года в 16:30 по московскому времени «Роскосмос» успешно произвёл стыковку многоцелевого лабораторного модуля (МЛМ) «Наука» с российским сегментом МКС. После стыковки двигатели модуля «Наука» незапланированно включились, что привело к вращению МКС в трёх плоскостях и приостановке большинства наблюдений за космосом из-за смены ориентации МКС. 30 июля 2021 года ориентация МКС восстановлена[30][31].

В 2023 году установлены дополнительные солнечные панели.

См. также информацию из других источников[32][33][34].

Эксплуатация

[править | править код]

В феврале 2010 года Многосторонний совет по управлению Международной космической станцией подтвердил, что не существует никаких известных на этом этапе технических ограничений на продолжение эксплуатации МКС после 2015 года, а администрация США предусмотрела дальнейшее использование МКС по меньшей мере до 2020 года[35]. НАСА и Роскосмос рассматривали продление этого срока по меньшей мере до 2024 года[36], с возможным продлением до 2027 года[37]. В мае 2014 года вице-премьер России Дмитрий Рогозин заявил, что Россия не намерена продлевать эксплуатацию Международной космической станции после 2020 года[38]. В 2015 году Роскосмос и НАСА договорились о продлении сроков эксплуатации Международной космической станции до 2024 года[39]. Ведутся переговоры о продлении срока службы до 2028 или 2030 года[40].

В 2011 году были завершены полёты многоразовых кораблей типа «Space Shuttle».

22 мая 2012 года с космодрома на мысе Канаверал запущена ракета-носитель «Falcon 9» с частным космическим грузовым кораблём «Dragon», который состыковался с МКС 25 мая. Это был первый в истории испытательный полёт к Международной космической станции частного космического корабля.

18 сентября 2013 года впервые сблизился с МКС и был пристыкован частный автоматический грузовой космический корабль снабжения «Сигнус».

16 мая 2016 года с 7:35 до 9:10 мск Международная космическая станция (МКС) совершила свой 100-тысячный виток вокруг Земли[41].

19 августа 2016 года на американском сегменте МКС поверх гермоадаптера-2 был пристыкован новый международный стыковочный адаптер IDA-2, предназначенный для стыковки пилотируемых кораблей, запускаемых по программе НАСА.

Летом 2017 года на станцию доставлен и установлен на транспортно-складской палете-2 прибор «Найсер», предназначенный для наблюдения пульсаров.

13 апреля 2018 года астронавты, находящиеся на борту Международной космической станции, произвели процедуру установки 314-килограммового набора инструментов Space Storm Hunter, предназначенного для изучения земных гроз и штормов[42].

3 марта 2019 года к МКС в тестовом режиме пристыковался частный космический корабль Crew Dragon от компании SpaceX.

31 мая 2020 года в 17:17 мск к МКС прибыл Crew Dragon уже с двумя астронавтами на борту. Это был первый запуск пилотируемого американского космического корабля за девять лет.

Центры контроля МКС

Проблемы с герметичностью и ЧП

[править | править код]

В сентябре 2019 года на МКС была обнаружена[англ.] утечка воздуха выше нормы. Последовательная герметизация отсеков станции — как российского, так и американского сегментов — позволила установить, что кислород утекает из промежуточной камеры российского модуля «Звезда»[43].

11 марта 2021 года российские космонавты заделали в модуле «Звезда» две трещины герметиком, но это не помогло — в изолированной переходной камере давление снизилось за 11,5 часа на 52 мм — до 678 мм ртутного столба, тогда как на станции давление составляет 730 мм ртутного столба[44].

21 апреля 2021 года руководитель полёта российского сегмента Международной космической станции Владимир Соловьёв сообщил СМИ, что до 80 % оборудования служебных и бортовых систем российского сегмента полностью выработали свой ресурс[45].

Незадолго до 12 мая 2021 года в передвижную обслуживающую систему «Канадарм2» попал небольшой осколок орбитального мусора, повредивший её тепловые одеяла и одну из стрел. На её работу, по-видимому, это не повлияло[46].

18 июля 2021 года представитель консультативного совета НАСА по аэрокосмической безопасности Дэвид Уэст сообщил, что в российском модуле «Звезда» определили несколько возможных мест утечки воздуха. Три из них были заделаны накладками или герметиком, но это не снизило темп утечки кислорода с МКС[47].

14 июля 2021 года давление в промежуточной камере модуля «Звезда» составило 473 мм ртутного столба, 20 июля — 273 мм, 25 июля — 200 мм, 28 июля (накануне стыковки с модулем «Наука») — 167 мм, а 29 июля — 160 мм[48].

29 июля 2021 года многофункциональный лабораторный модуль «Наука» был пристыкован в автоматическом режиме к надирному стыковочному узлу служебного модуля «Звезда» на место модуля «Пирс», который был отстыкован и затоплен. Спустя несколько часов после стыковки самопроизвольно запустились двигатели ориентации модуля «Наука», что привело к развороту МКС на 45 ° и к потере связи с Центром управления полётами дважды, на 4 и на 7 минут. После выработки топлива двигатели «Науки» отключились. Международная космическая станция не получила повреждений из-за ЧП[49].

31 июля 2021 года экипаж Международной космической станции заявил о падении давления в промежуточной камере модуля «Звезда» до 154 мм ртутного столба, весной оно было на уровне 405 мм ртутного столба[50].

Планируемые события

[править | править код]

Осенью 2022 года к модулю «Наука» планируется пристыковать шлюзовую камеру, которая пока хранится на модуле «Рассвет»[51][52].

На российском модуле МКС установят научный комплекс «Мониторинг всего неба» для создания уточнённой карты всего звёздного неба. Комплекс будет составлять карту расположения всех объектов на небесной сфере в течение трёх лет[53].

Россия выйдет из проекта Международной космической станции (МКС) в 2025 году и сосредоточит усилия на работе над своей национальной космической станцией[54].

В 2024 году американская компания Axiom Space планирует пристыковать к модулю «Гармония» первый коммерческий модуль, а к нему — два других, и использовать их для космического туризма (рассматриваются и варианты с бо́льшим числом модулей). После закрытия проекта МКС сегмент «Аксиом» планируется дооснастить независимой СЖО, отстыковать, и использовать как коммерческую орбитальную станцию.

26 июля 2022 года Россия объявила о своем выходе из проекта Международной космической станции после 2024 года. Новый глава «Роскосмоса» Юрий Борисов объявил об этом решении на встрече с президентом России Владимиром Путиным, заявив, что вместо этого компания сосредоточится на строительстве собственной орбитальной станции. Глава ведомства указал на стареющее оборудование и растущие риски для безопасности страны[55].

Вывод из эксплуатации

В случае принятия решения об окончании эксплуатации станции планируется сведение её с орбиты. В данное время согласовано финансирование и эксплуатация МКС по 2024 год включительно, рассматривается дальнейший цикл продления до 2028 (2030) года. В конце 2021 года американская сторона продлила срок эксплуатации станции до 2030 года[56].

Станцию, как и другие космические объекты, должны затопить в Тихом океане, выбрав для этого несудоходный район. По предварительным оценкам, несгоревшими останутся около 120 тонн обломков при общей массе космической станции более 400 тонн. Траектория снижения МКС с высоты 400 км состоит из нескольких этапов. Когда она достигнет 270-километровой орбиты, время снижения до поверхности Земли займёт примерно месяц. Разделение станции порционно на высотах в 110, 105 и 75 километров позволит расширить зону падения обломков до 6 тысяч километров. Какие установки будут задействованы для ликвидации МКС, пока не определено, рассматриваются варианты с двигателями модуля «Звезда» либо комбинацией нескольких «Прогрессов»[57].

Рассматривались предложения отделения в 2024 году от МКС российского сегмента из трёх модулей («лабораторный модуль», узловой модуль, «научно-энергетический модуль») и создание на их базе национальной космической станции[58].

Устройство станции

[править | править код]

Модули и составляющие части

[править | править код]

В основу устройства станции заложен модульный принцип. Сборка МКС происходит путём последовательного добавления к комплексу очередного модуля или блока, который соединяется с уже доставленным на орбиту.

На декабрь 2021 года в состав МКС входит 15 основных модулей (российские — «Заря», «Звезда», «Поиск», «Рассвет», «Наука», «Причал»; американские — «Юнити», «Дестини», «Квест», «Гармония», «Транквилити», «Купола», «Леонардо»; европейский «Коламбус»; японский «Кибо», состоящий из двух частей), а также экспериментальный модуль «BEAM»[59] и шлюзовой модуль «Бишоп» для запуска малых спутников и выброса мусора.

Логотип YouTube Видеохронология установки модулей МКС (русские субтитры)

На схеме изображены все основные и второстепенные модули, которые являются частью станции (закрашенные) или планируются для доставки (незакрашенные):


Стыковочный узел
ССВП
Солнечная
батарея
Звезда
(служебный модуль)
Солнечная
батарея
Стыковочный узел
ССВП
Поиск (МИМ-2)ERA
(манипулятор)
Шлюзовая камера
(для гермоадаптера МЛМ «Наука»)
Наука (МЛМ-У)Гермоадаптер
с иллюминатором
УМ Причал
(с пятью СУ ССВП)
Солнечная
батарея
Солнечная
батарея
Солнечная
батарея
Заря
(первый модуль)
Солнечная
батарея
Рассвет (МИМ-1)Стыковочный узел
ССВП
Гермопереходник
PMA-1
Стыковочный узел
CBM
Leonardo
(многоцелевой модуль)
BEAM
(развертываемый модуль)
Quest
(шлюзовой отсек)
Unity
(узловой модуль)
Tranquility
(жилой модуль)
Купол
(обзорный модуль)
склад-платформа
ESP-2
Ферма Z1Стыковочный узел
CBM (неиспользуемый)
Bishop
(шлюзовой модуль)
Солнечная
батарея
Солнечная
батарея
ТерморадиаторТерморадиаторСолнечная
батарея
Солнечная
батарея
Детектор AMS,
палета ELC-2
Палета ELC-3
Ферма S5/S6Ферма S3/S4Ферма S1Ферма S0Ферма P1Ферма P3/P4Ферма P5/P6
склад-платформа
ESP-3, палета ELC-4
Палета ELC-1
Dextre
(манипулятор)
Canadarm2
(манипулятор)
Солнечная
батарея
Солнечная
батарея
Солнечная
батарея
Солнечная
батарея
склад-платформа
ESP-1
Destiny
(лабораторный модуль)
гермосекция
Kibo
манипулятор
Kibo
Забортное
оборудование
Columbus
(лабораторный модуль)
Harmony
(узловой модуль)
Kibo
(лабораторный модуль)
внешняя платформа
Kibo
Гермопереходник
PMA-3
Гермопереходник
PMA-2
надирный стыковочный узел
CBM
зенитный стыковочный узел
IDA-3
передний стыковочный узел
IDA-2

Расположение модулей относительно друг друга иногда меняется. На схеме показано их текущее расположение. Синим цветом показаны герметичные части станции и пристыкованные к ней корабли. Забортные конструкции показаны жёлтым и красным цветом. Серым цветом — модули, выведенные из эксплуатации и отстыкованные. Сверху на схеме — кормовая часть станции. Слева находится зенит, справа — надир (направление к Земле).

На схеме изображены:

  • «Заря» — функционально-грузовой модуль «Заря», первый из доставленных на орбиту модулей МКС. Масса модуля — 20 тонн, длина — 12,6 м, диаметр — 4 м, объём — 80 м³. Оборудован реактивными двигателями для коррекции орбиты станции и большими солнечными батареями. Срок эксплуатации модуля несколько раз продлевался и на 2019 год модуль сертифицирован до 2028 года с учётом плановых замен оборудования[60]. Модуль принадлежит США, хотя технически интегрирован в российский сегмент МКС[61]. Произведён «ГКНПЦ им. М. В. Хруничева» по заказу корпорации Boeing, которая выступала в качестве субподрядчика НАСА при производстве и запуске модуля[62];
  • «Звезда» — служебный модуль «Звезда», в котором располагаются системы управления полётом, системы жизнеобеспечения, энергетический и информационный центр, а также каюты для космонавтов. Масса модуля — 24 тонны. Модуль разделён на пять отсеков и имеет четыре стыковочных узла. Все его системы и блоки — российские, за исключением бортового вычислительного комплекса, созданного при участии европейских и американских специалистов. На модуле по настоянию американской стороны смонтирована противометеоритная панель[63];
  • МИМ-1 и МИМ-2 — малые исследовательские модули, два российских грузовых модуля «Поиск» и «Рассвет», предназначенные для хранения оборудования, необходимого для проведения научных экспериментов. «Поиск» пристыкован к зенитному (то есть направленному от Земли) стыковочному узлу модуля Звезда, а «Рассвет» — к надирному (то есть направленному к Земле) порту модуля «Заря»[26];
  • Гермоадаптер (PMA) — герметичный стыковочный переходник, предназначенный для соединения между собой модулей МКС, и для обеспечения стыковок шаттлов;
  • «Транквилити» — модуль МКС, выполняющий функции жизнеобеспечения. Содержит системы по переработке воды, регенерации воздуха, утилизации отходов и др. Соединён с модулем «Юнити»[64][65];
  • «Юнити» — первый из трёх соединительных модулей МКС, выполняющий роль стыковочного узла и коммутатора электроэнергии для модулей «Квест», «Нод-3», фермы Z1 и стыкующихся к нему через Гермоадаптер-3 транспортных кораблей;
  • «Пирс» — порт причаливания, предназначавшийся для осуществления стыковок российских «Прогрессов» и «Союзов»; до июля 2021 года был установлен на модуле «Звезда». Был отстыкован 26 июля 2021, на его место был установлен модуль «Наука»;
  • Фермы — объединённая ферменная структура, на элементах которой установлены солнечные батареи, панели радиаторов и дистанционные манипуляторы. Также предназначена для негерметичного хранения грузов и различного оборудования;
  • Внешние складские платформы (ESP) — внешние складские платформы: три внешние негерметичные платформы, предназначенные исключительно для хранения грузов и оборудования;
  • Транспортно-складские палеты (ELC) — четыре негерметичные платформы, закреплённые на фермах 3 и 4, предназначенные для размещения оборудования, необходимого для проведения научных экспериментов в вакууме. Обеспечивают обработку и передачу результатов экспериментов по высокоскоростным каналам на станцию[66];
  • «Канадарм2», или «Мобильная обслуживающая система» — канадская система дистанционных манипуляторов, служащая в качестве основного инструмента для разгрузки транспортных кораблей и перемещения внешнего оборудования[67];
  • «Декстр» — канадская система из двух дистанционных манипуляторов, служащая для перемещения оборудования, расположенного вне станции;
  • «Квест» — специализированный шлюзовой модуль, предназначенный для осуществления выходов космонавтов и астронавтов в открытый космос с возможностью предварительного проведения десатурации (вымывания азота из крови человека);
  • «Гармония» — соединительный модуль, выполняющий роль стыковочного узла и коммутатора электроэнергии для трёх научных лабораторий и стыкующихся к нему через Гермоадаптер-2 транспортных кораблей. Содержит дополнительные системы жизнеобеспечения;
  • «Коламбус» — европейский лабораторный модуль, в котором, помимо научного оборудования, установлены сетевые коммутаторы (хабы), обеспечивающие связь между компьютерным оборудованием станции. Пристыкован к модулю «Гармония»;
  • «Дестини» — американский лабораторный модуль, состыкованный с модулем «Гармония»;
  • «Кибо» — японский лабораторный модуль, состоящий из трёх отсеков и одного основного дистанционного манипулятора. Самый большой модуль станции. Предназначен для проведения физических, биологических, биотехнологических и других научных экспериментов в герметичных и негерметичных условиях. Кроме того, благодаря особой конструкции позволяет проводить незапланированные эксперименты. Пристыкован к модулю «Гармония»;
Обзорный купол МКС
  • «Купол» — прозрачный обзорный купол. Его семь иллюминаторов (самый большой имеет 80 см в диаметре) используются для проведения экспериментов, наблюдения за космосом и Землёй, при стыковке космических аппаратов, а также как пульт управления главным дистанционным манипулятором станции. Место для отдыха членов экипажа. Разработан и изготовлен Европейским космическим агентством. Установлен на узловой модуль «Транквилити»[65];
  • Герметичный многофункциональный модуль (Permanent Multipurpose Module, PMM) — складское помещение для хранения грузов, пристыкован к модулю «Транквилити». Это один из двух грузовых модулей, периодически доставлявшихся на орбиту шаттлами для дооснащения МКС необходимым научным оборудованием и прочими грузами. Модули «Леонардо» и «Рафаэль», имеющие общее название «Многоцелевой модуль снабжения», стыковались к надирному порту «Юнити». Переоборудованный модуль «Леонардо» начиная с марта 2011 года постоянно входит в число модулей станции[68];
  • Международные стыковочные адаптеры (IDA, сокращение от англ. International Docking Adapter) — международные стыковочные адаптеры-переходники, предназначенные для преобразования системы стыковки АПАС-95 в систему стыковки НАСА. Первый присоединён к PMA-2 в 2016 году, второй — к PMA-3 в 2019 году;
  • «BEAM» — экспериментальный развёртываемый жилой модуль МКС, разработанный частной космической компанией Bigelow Aerospace, — первый модуль МКС, разработанный частной фирмой. Модуль изначально использовался для проведения экспериментов по измерению уровня радиации и воздействия микрочастиц, а затем — в качестве склада. Пристыкован к узловому модулю «Транквилити»[69].
  • «Наука» — российский многофункциональный лабораторный модуль (запуск произошёл 21 июля 2021 года), где предусмотрены условия для хранения научного оборудования, проведения научных экспериментов, временного проживания экипажа. На модуле закреплён Европейский манипулятор ERA и Узловой модуль «Причал».

Стыковочные узлы и шлюзы

[править | править код]

После пристыковки в конце 2021 года модуля «Причал» станция имеет 12 стыковочных узлов, играющих роль портов: 8 для приёма грузовых и пилотируемых космических кораблей и 4 для пристыковки в будущем новых модулей (но пригодных и для приёма кораблей):

Конус ССВП
Щуп ССВП
  • 8 портов ССВП на российском сегменте, включая:
    • 5 на модуле «Причал» (4 ССВП-М8000 для пристыковки новых модулей и надирный ССВП-Г4000), и
    • по одному ССВП-Г4000 на модулях «Звезда» (кормовой), «Поиск» (зенитный) и «Рассвет» (надирный)[70], и
  • 4 CBM на американском сегменте: 3 на модуле «Гармония» (2 из которых оборудованы адаптером IDA) и 1 на модуле «Юнити» (надирный).

Кроме них имеется неиспользуемый зенитный стыковочный узел модуля «Транквилити»[71], а также

  • 1 шлюзовой люк шлюзового модуля «Квест» для ВКД,
  • 2 шлюзовых люка диаметром 1 м для ВКД на модуле «Поиск» (боковые)[72]
  • 1 стыковочный узел (левый) на модуле «Транквилити» для периодически отстыковываемого шлюзового модуля «Бишоп», используемого для запуска малых спутников и выброса мусора, и
  • 1 стыковочный узел (передний) для шлюзовой камеры на гермоадаптере модуля «Наука».

Поскольку граф стыковки модулей станции имеет структуру дерева (то есть в нём отсутствуют циклы), она всегда имеет на один межмодульный переход меньше, чем число её модулей. Так, на декабрь 2021 года она имеет 14 постоянно открытых межмодульных переходов, и с учётом трёх гермоадаптеров РМА — 17 внутренних стыковочных узлов, не считая лишь изредка открываемых люков сообщения с модулями «BEAM» и «Бишоп» и фермой Z1 и люков, ведущих в пристыкованные к станции космические корабли.

Помимо межмодульных узлов, в некоторых крупных модулях («Заря», «Звезда», «Наука», «Кибо») имеются внутримодульные люки, способные отделять герметичные адаптеры этих модулей от их остальной части.

Наибольшее количество стыковочных узлов (6) имеют узловые модули «Юнити», «Гармония», «Транквилити» и «Причал». Столько же стыковочных узлов имеет созданный для МКС, но так и не запущенный Node-4[англ.], судьба которого пока неясна.

Стандартный внутренний диаметр стыковочных узлов российского сегмента — 80 см; люков CBM американского — 127 см (кроме двух адаптеров IDA, внутренний диаметр которых — 80 см).

Иллюминатор модуля «Дестини»

Иллюминаторы

[править | править код]

Крупнейшим оптическим шлюзом станции является созданный в Италии 7-иллюминаторный модуль «Купол» американского сегмента, с центральным круглым иллюминатором из кварцевого стекла диаметром 800 мм и толщиной 100 мм, и 6 трапециевидными вокруг него[73][74]. Второй, ещё более крупный купол планируется установить в сегменте Аксиом.

Кроме «Купола», в станции имеется много отдельных иллюминаторов: например, 14 в модуле «Звезда»[75], 2 на шлюзовых люках «Поиска», диаметром 228 мм[76], 2 более крупных в модуле «Кибо»[77], в модуле «Дестини» — крупный надирный иллюминатор диаметром 510 мм[78], в модуле «Наука» — крупнейший в российском сегменте, диаметром 426 мм[79]. Российский сегмент после запуска модуля «Наука» имеет 20 иллюминаторов[80]. Небольшие иллюминаторы имеются на некоторых стыковочных люках CBM американского сегмента[81].

Иллюминаторы снабжены защитными кожухами, закрытие которых управляется изнутри. Со временем иллюминаторы изнашиваются: от столкновений с микрочастицами космического мусора на их внешней поверхности появляются каверны и царапины[82]. Для борьбы с порчей разработан специальный состав, которым будут покрывать внешнюю поверхность иллюминаторов[83][84]. Пока же их периодически чистят в ходе ВКД с помощью специальных инструментов[85].

Электроснабжение станции

[править | править код]
МКС в 2001 году. Видны солнечные батареи модулей «Заря» и «Звезда», а также ферменная конструкция P6 с американскими солнечными батареями

Единственным источником электрической энергии для МКС является Солнце, свет которого солнечные батареи станции преобразуют в электроэнергию[86].

В российском сегменте МКС используется постоянное напряжение 28 вольт[87][88], аналогичное применяемому на космических кораблях «Спейс Шаттл»[89] и «Союз»[90]. Электроэнергия вырабатывается непосредственно солнечными батареями модулей «Заря» и «Звезда», а также передаётся с американского сегмента в российский через преобразователь напряжения ARCU (American-to-Russian converter unit) и в обратном направлении через преобразователь напряжения RACU (Russian-to-American converter unit)[91][92]. При разработке проекта станции планировалось, что российский сегмент станции будет обеспечиваться электроэнергией с помощью российского модуля «Научно-энергетическая платформа» (НЭП), но в 2001 году её создание было остановлено из-за нехватки средств, в то же время планировалась её доставка на МКС американским шаттлом в конце 2004 года.[93][94] После катастрофы шаттла «Колумбия» в 2003 году программа сборки станции и график полётов шаттлов были пересмотрены. Среди прочего, отказались от доставки НЭП, американская сторона предложила подачу электроэнергии со своего сегмента в российский сегмент; поэтому в данный момент большая часть электроэнергии производится солнечными батареями американского сектора[86][95].

В американском сегменте солнечные батареи организованы следующим образом: две гибкие складные панели солнечных батарей образуют так называемое крыло солнечной батареи (Solar Array Wing, SAW), всего на ферменных конструкциях станции размещено четыре пары таких крыльев. Каждое крыло имеет длину 35 м и ширину 11,6 м, а его полезная площадь составляет 298 м², при этом вырабатываемая им суммарная мощность может достигать 32,8 кВт[86][96]. Солнечные батареи генерируют первичное постоянное напряжение от 115 до 173 вольт, которое затем с помощью блоков DDCU (англ. Direct Current to Direct Current Converter Unit) трансформируется во вторичное стабилизированное постоянное напряжение величиной 124 вольта. Это стабилизированное напряжение непосредственно используется для питания электрооборудования американского сегмента станции[97].

29.05.2021 1:42:19

Станция совершает один оборот вокруг Земли примерно за 90 минут (исходя из последних TLE данных станции[98][99][100] на 29 мая 2021 за 92,32 минуты, то есть за 1 час 32 минуты 58 секунд) и около половины этого времени проводит в тени Земли, где солнечные батареи не работают. Тогда её электроснабжение происходит от буферных аккумуляторных батарей, которые восполняют заряд при выходе МКС из земной тени. Срок службы первоначальных никель-водородных аккумуляторных батарей 6,5 лет; ожидается, что за время жизни станции их будут неоднократно заменять[86][101]. Первая замена аккумуляторных батарей была осуществлена в ходе полёта шаттла «Индевор» STS-127 в июле 2009 года. Новый цикл замены был начат после доставки первой группы аккумуляторных батарей грузовым кораблём HTV Kounotori 6 в декабре 2016 года, вторая группа, не последняя, была доставлена в сентябре 2018 года HTV Kounotori 7.

Солнечная батарея на МКС

При нормальных условиях солнечные батареи американского сектора отслеживают Солнце, чтобы увеличить до максимума выработку энергии. Солнечные батареи наводятся на Солнце с помощью приводов «Альфа» и «Бета». На станции установлено два привода «Альфа», которые поворачивают вокруг продольной оси ферменных конструкций сразу несколько секций с расположенными на них солнечными батареями: первый привод поворачивает секции от P4 до P6, второй — от S4 до S6. Каждому крылу солнечной батареи соответствует свой привод «Бета», который обеспечивает вращение крыла относительно его продольной оси[86][102].

Когда МКС находится в тени Земли, солнечные батареи переводятся в режим Night Glider mode[англ.] («Режим ночного планирования»), при этом они поворачиваются краем по направлению движения, чтобы уменьшить сопротивление атмосферы, которая присутствует на высоте полёта станции[102].

29 апреля 2019 года на Международной космической станции зафиксировали проблему в системе энергоснабжения. Как сообщило НАСА, команды работают над выявлением причины и восстановлением электропитания в системе, непосредственной причины для беспокойства за экипаж станции нет[103].

Микрогравитация

[править | править код]

Притяжение Земли на высоте орбиты станции составляет 88-90 % от притяжения на уровне моря[Комм 3]. Состояние невесомости обусловлено постоянным свободным падением МКС, которое, согласно принципу эквивалентности, равнозначно отсутствию притяжения. Однако состояние тел на станции несколько отличается от полной невесомости (и зачастую описывается как микрогравитация) из-за четырёх эффектов:

  • Тормозящее давление остаточной атмосферы.
  • Вибрационные ускорения из-за работы механизмов и перемещения экипажа станции.
  • Коррекция орбиты.
  • Приливные ускорения относительно центра тяжести станции ввиду неоднородности гравитационного поля Земли.

Все эти факторы создают квазистатические ускорения, достигающие значений 10−6 g, и высокочастотные колебания ускорения с амплитудой до 10−2 g[104][105].

На станции поддерживается атмосфера, близкая к земной[106]. Нормальное атмосферное давление на МКС — 101,3 килопаскаля, такое же, как на уровне моря на Земле. Атмосфера на МКС не совпадала с атмосферой, поддерживаемой в шаттлах, поэтому после пристыковки космического челнока происходило выравнивание давлений и состава газовой смеси по обе стороны шлюза[107]. Примерно с 1999 по 2004 годы в NASA существовал и разрабатывался проект IHM (Inflatable Habitation Module), в котором планировалось использование давления атмосферы на станции для развёртывания и создания рабочего объёма дополнительного обитаемого модуля. Корпус этого модуля предполагалось изготовить из кевларовой ткани с герметичной внутренней оболочкой из газонепроницаемого синтетического каучука. Однако в 2005 году по причине нерешённости большинства проблем, поставленных в проекте (в частности, проблемы защиты от частиц космического мусора), программа IHM была закрыта.

Средства связи

[править | править код]

Передача телеметрии и обмен научными данными между станцией и центрами управления полётом осуществляется с помощью радиосвязи. Кроме того, средства радиосвязи используются во время операций по сближению и стыковке, их применяют для аудио- и видеосвязи между членами экипажа и с находящимися на Земле специалистами по управлению полётом, а также родными и близкими космонавтов. Таким образом, МКС оборудована внутренними и внешними многоцелевыми коммуникационными системами[108].

Российский сегмент МКС поддерживает связь с Землёй напрямую с помощью радиоантенны «Лира», установленной на модуле «Звезда»[109][110]. «Лира» даёт возможность использовать спутниковую систему ретрансляции данных «Луч»[109]. Эту систему использовали для связи со станцией «Мир», но в 1990-х годах она пришла в упадок и в настоящее время не применяется[109][111][112][113]. Для восстановления работоспособности системы в 2012 году был запущен «Луч-5А». В мае 2014 года на орбите действуют 3 спутника многофункциональной космической системы ретрансляции «Луч» — «Луч-5А», «Луч-5Б» и «Луч-5В». В 2014 году запланирована установка на российский сегмент станции специализированной абонентской аппаратуры[114][115][116].

Другая российская система связи, «Восход-М», обеспечивает телефонную связь между модулями «Звезда», «Заря», «Пирс», «Поиск» и американским сегментом, а также УКВ-радиосвязь с наземными центрами управления, используя для этого внешние антенны модуля «Звезда»[117][118].

В американском сегменте для связи в S-диапазоне (передача звука) и Ku-диапазоне (передача звука, видео, данных) применяются две отдельные системы, расположенные на ферменной конструкции Z1. Радиосигналы от этих систем передаются на американские геостационарные спутники TDRSS, что позволяет поддерживать практически непрерывный контакт с центром управления полётами в Хьюстоне[108][109][119]. Данные с «Канадарм2», европейского модуля «Коламбус» и японского «Кибо» перенаправляются через эти две системы связи, однако американскую систему передачи данных TDRSS со временем дополнят европейская спутниковая система (EDRS) и аналогичная японская[119][120]. Связь между модулями осуществляется по внутренней цифровой беспроводной сети[121].

Во время выходов в открытый космос космонавты используют УКВ-передатчик дециметрового диапазона. УКВ-радиосвязью также пользуются во время стыковки или расстыковки космические аппараты «Союз», «Прогресс», HTV, ATV и «Спейс шаттл» (шаттлы применяли также передатчики S- и Ku-диапазонов посредством TDRSS). С её помощью эти космические корабли получают команды от центров управления полётом или от членов экипажа МКС[109]. Автоматические космические аппараты оборудованы собственными средствами связи. Так, корабли ATV используют во время сближения и стыковки специализированную систему Proximity Communication Equipment (PCE), оборудование которой располагается на ATV и на модуле «Звезда». Связь осуществляется через два полностью независимых радиоканала S-диапазона. PCE начинает функционировать, начиная с относительных дальностей около 30 километров, и отключается после стыковки ATV к МКС и перехода на взаимодействие по бортовой шине MIL-STD-1553. Для точного определения относительного положения ATV и МКС используется система установленных на ATV лазерных дальномеров, делающая возможной точную стыковку со станцией[122][123].

Станция оборудована примерно сотней портативных компьютеров ThinkPad от IBM и Lenovo, моделей A31 и T61P, работающих под управлением операционной системы Debian GNU/Linux[124]. Это обычные серийные компьютеры, которые, однако, были доработаны для применения в условиях МКС; в частности, в них переделаны разъёмы, система охлаждения, учтено используемое на станции бортовое напряжение 28 вольт, а также выполнены требования безопасности для работы в невесомости[125]. С января 2010 года на станции для американского[126] сегмента организован прямой доступ в Интернет[127]. Компьютеры на борту МКС соединены с помощью Wi-Fi в беспроводную сеть и связаны с Землёй на скорости 3 Мбит/c (МКС-Земля) и 10 Мбит/с (Земля-МКС), что сравнимо с домашним ADSL-подключением[128].

Санузел для космонавтов

[править | править код]
Космический туалет на модуле «Звезда»

На МКС 3 санузла: европейского, американского и российского производства. Они находятся на модулях «Звезда» и «Транквиллити». Унитаз на ОС предназначен как для мужчин, так и для женщин, выглядит точно так же, как на Земле, но имеет ряд конструктивных особенностей. Унитаз снабжён фиксаторами для ног и держателями для бёдер, в него вмонтированы мощные воздушные насосы. Космонавт пристёгивается специальным пружинным креплением к сидению унитаза, затем включает мощный вентилятор и открывает всасывающее отверстие, куда воздушный поток уносит все отходы. Затем, жидкие отходы удаляются с помощью шланга, подсоединенного к передней части туалета, с анатомически правильными «переходниками для воронки мочи», прикрепленными к трубке, с тем чтобы мужчины и женщины могли пользоваться одним туалетом. Очищаемая моча собирается и передается в систему рекуперации воды, где она перерабатывается в питьевую воду.[129]

Воздух из туалетов перед попаданием в жилые помещения обязательно фильтруется для очистки от бактерий и запаха[130].

В декабре 2020 года, кораблём Cygnus CRS NG-14 на станцию доставлен и установлен туалет американского производства — UWMS (Universal Waste Management System), который установлен в модуле «Транквиллити»[131]. С прибытием в 2021 году на станцию модуля «Наука», количество туалетов было доведено до четырёх.

Режим работы экипажа

[править | править код]

На МКС используется среднее время по Гринвичу (GMT). Через каждые 16 восходов/закатов закрываются иллюминаторы станции, чтобы создать иллюзию ночного затемнения. Команда обычно просыпается в 7 часов утра (UTC), и обычно работает около 10 часов каждый будний день и около пяти часов — каждую субботу[132]. Во время визитов шаттлов экипаж МКС следовал Mission Elapsed Time (MET) — общему полётному времени шаттла, которое не было привязано к конкретному часовому поясу, а считалось исключительно от времени старта космического челнока[133][134]. Экипаж МКС заранее сдвигал время своего сна перед прибытием челнока и возвращался к прежнему режиму после его отбытия.

В меню на МКС с 10 августа 2015 года была официально включена свежая зелень (салат латук), выращенная в условиях микрогравитации на орбитальной плантации Veggie[135] Многие СМИ сообщали, что космонавты впервые попробовали собственно выращенную еду, но аналогичный эксперимент ранее был проведён на станции «Мир»[136][137].

Полёты к МКС

[править | править код]

Все долговременные экспедиции называются «МКС-N», где N — номер, который увеличивается на единицу после каждой экспедиции. Длительность экспедиции обычно составляет полгода. Началом экспедиции считается отбытие предыдущего экипажа.

МКС со флагами стран-участниц проекта на почтовой марке России 2000 года из серии «Международное сотрудничество в космосе» (ЦФА [АО «Марка»] № 580)

Долговременные экипажи нумеруются таким образом, что в названии экипажа присутствуют номера тех экспедиций, в которых они задействованы. Если экипаж работает в нескольких экспедициях, то название экипажа содержит номера этих экспедиций, разделённые косой чертой. Например: Экипаж МКС-44/45/46. Иногда прилетевшие одним кораблём на МКС члены экипажа могут пробыть на станции разное время и улетать на разных кораблях.

По соглашению сторон, российский экипаж из трёх человек должен был постоянно работать в своём сегменте, четыре астронавта в американском сегменте делят время пропорционально вкладам в строительство станции: США — около 76 %, Япония — 13 %, ЕКА — 8 % и Канада — 3 %.

МКС — это самый посещаемый орбитальный космический комплекс в истории космонавтики. Если не считать повторных посещений, то к 2017 году на МКС побывало 224 космонавта (на станции «Мир» — 104)[138].

22 ноября 2010 года длительность непрерывного пребывания людей на борту МКС превысила 3641 день, тем самым был побит рекорд, принадлежащий станции «Мир»[139].

К февралю 2017 года на станции побывали 50 долговременных экспедиций, в составе которых работали 226 человек (из них 34 женщины) из 18 стран мира: 46 российских космонавтов, 142 американских астронавта, 17 европейских, 8 японских, 7 канадских, по одному из ЮАР, Бразилии, Малайзии, Южной Кореи, Казахстана и Великобритании, а также 7 космических туристов, причём один турист (Чарльз Симони) посетил станцию дважды.

27 сентября 2023 года завершён самый длительный полёт космонавтов в истории Международной космической станции. Космонавты Сергей Прокопьев, Дмитрий Петелин и астронавт Франсиско Рубио пробыли в космосе беспрерывно с 21 сентября 2022 по 27 сентября 2023 года[140][141][142].

Орбита станции

[править | править код]

МКС рассчитана на работу на орбитах с высотой от 270 до 500 км. Это диктуется несколькими причинами:

  • Нижняя граница орбиты: Торможение об атмосферу
    Чем ниже высота орбиты, тем больше торможение об атмосферу и тем чаще необходимо проводить коррекцию повышения орбиты. Это требует дополнительных затрат топлива. Из-за этого обращение МКС на высоте менее 270 км нежелательно.
  • Верхняя граница орбиты: Космическая радиация
    Чем больше высота орбиты, тем большую дозу космического облучения получают космонавты и приборы. За отметкой 500 км уровень радиации резко повышается, так как выше этого уровня идут радиационные пояса. По этому критерию орбиты длительных пилотируемых полётов не делают выше 500 км.
  • Корабли снабжения
    «Союз» и «Прогресс» сертифицированы на работу на высоты до 460 км при спуске корабля (в том числе затраты топлива на торможение, для управляемого схода с орбиты в заданном районе) и до 425 км при стыковке корабля (в том числе затраты топлива на маневрирование и причаливание)[143]. Это является практической верхней границей орбиты МКС.

Ранее в качестве кораблей снабжения также использовался Спейс Шаттл. Поэтому приходилось держать орбиту в диапазоне 320—350 км. В связи с прекращением программы Спейс Шаттл — это ограничение было снято и орбита МКС была поднята до более приемлемых 400—420 км.

Коррекция высоты орбиты

[править | править код]
График высоты МКС

Высота орбиты МКС постоянно изменяется. За счёт трения о разрежённую атмосферу происходит постепенное торможение и потеря высоты[144]. Атмосферное сопротивление снижает высоту в среднем примерно на 2 км в месяц.

Орбита станции корректируется с помощью собственных двигателей (до лета 2000 года — ФГБ «Заря», после — СМ «Звезда») и двигателей приходящих транспортных кораблей, которые также производят дозаправку топлива[145]. Одно время ограничивались компенсацией снижения. С 2021 года средняя высота орбиты станции понемногу снижается[146].

Для того, чтобы снизить до минимума влияние атмосферы, станцию надо было поднять до 390—400 км. Однако для увеличения общей полезной нагрузки американских шаттлов[147] её приходилось удерживать ниже, корректируя лишь пару раз в год[148].

Если ранее в среднем для удержания МКС на орбите 350 км в год требовалось 8600 кг топлива, то с повышением её до 400 км требуется только 3600 кг[149]. Так например, только три грузовых корабля ATV — «Жюль Верн» (2008), «Иоганн Кеплер» (2011) и «Эдоардо Амальди» (2012) — вместе выполнили 25 манёвров, чтобы обеспечить приращение скорости 67 м/с при расходе 8400 кг топлива. Расход топлива для управления ориентацией при этом дополнительно составил 1926 кг. Увеличение массы МКС на 40 % в период сборки с 2008 по 2011 год также привело к увеличению затрат топлива для коррекции[145].

В связи с окончанием программы полёта шаттлов ограничение высоты было снято[150]. Повышение орбиты позволило существенно сэкономить на доставке топлива и тем самым увеличить количество продуктов питания, воды и других полезных грузов, доставляемых транспортными кораблями[149].

Помимо компенсации торможения, несколько раз в год орбита станции корректируется для уклонения от космического мусора.

С момента запуска станции до 17 октября 2022 года её орбита корректировалась 327 раз, из них 176 — двигателями кораблей «Прогресс»[151].

Научные исследования

[править | править код]
Экспериментальные образцы, экспонируемые в открытом космосе. 13 августа 2007 года

Одной из основных целей при создании МКС являлась возможность проведения на станции экспериментов, требующих наличия уникальных условий космического полёта: микрогравитации, вакуума, космических излучений, не ослабленных земной атмосферой. Главные области исследований включают в себя биологию (в том числе биомедицинские исследования и биотехнологию), физику (включая физику жидкостей, материаловедение и квантовую физику), астрономию, космологию и метеорологию. Исследования проводятся с помощью научного оборудования, в основном расположенного в специализированных научных модулях-лабораториях; часть оборудования для экспериментов, требующих вакуума, закреплена снаружи станции, вне её гермообъёма[источник не указан 2085 дней].

Научные модули МКС

[править | править код]

В составе станции находятся три специальных научных модуля — американская лаборатория «Дестини», запущенная в феврале 2001 года, европейский исследовательский модуль «Коламбус», доставленный на станцию в феврале 2008 года, и японский исследовательский модуль «Кибо». В европейском исследовательском модуле оборудованы 10 стоек, в которых устанавливаются приборы для исследований в различных разделах науки. Некоторые стойки специализированы и оборудованы для исследований в области биологии, биомедицины и физики жидкостей. Остальные стойки — универсальные, в них оборудование может меняться в зависимости от проводимых экспериментов[источник не указан 2085 дней].

Японский исследовательский модуль «Кибо» состоит из нескольких частей, которые последовательно доставлялись и монтировались на орбите. Первый отсек модуля «Кибо» — герметичный экспериментально-транспортный отсек (англ. JEM Experiment Logistics Module — Pressurized Section) был доставлен на станцию в марте 2008 года, в ходе полёта шаттла «Индевор» STS-123. Последняя часть модуля «Кибо» была присоединена к станции в июле 2009 года, когда шаттл доставил на МКС негерметичный экспериментально-транспортный отсек (англ. Experiment Logistics Module, Unpressurized Section)[152].

Россия имеет на орбитальной станции два «Малых исследовательских модуля» (МИМ) — «Поиск» и «Рассвет». Кроме того, в 2021 году на МКС доставлен многофункциональный лабораторный модуль «Наука» (МЛМ). Полноценными научными возможностями обладает только последний, количество научной аппаратуры, размещённой на двух МИМ, минимально.

Совместные эксперименты

[править | править код]

Международная природа проекта МКС способствует проведению совместных научных экспериментов. Наиболее широко подобное сотрудничество развивают европейские и российские научные учреждения под эгидой ЕКА и Федерального космического агентства России. Известными примерами такого сотрудничества стали эксперимент «Плазменный кристалл», посвящённый физике пылевой плазмы, и проводимый Институтом внеземной физики Общества Макса Планка, Институтом высоких температур и Институтом проблем химической физики РАН, а также рядом других научных учреждений России и Германии[153][154], медико-биологический эксперимент «Матрёшка-Р», в котором для определения поглощённой дозы ионизирующих излучений используются манекены — эквиваленты биологических объектов, созданные в Институте медико-биологических проблем РАН и Кёльнском институте космической медицины[155].

Российская сторона также является подрядчиком при проведении контрактных экспериментов ЕКА и Японского агентства аэрокосмических исследований. Например, российские космонавты проводили испытания робототехнической экспериментальной системы ROKVISS (англ. Robotic Components Verification on ISS — испытания робототехнических компонентов на МКС), разработанной в Институте робототехники и механотроники, расположенном в Веслинге, неподалёку от Мюнхена, Германия[156][157].

Российские исследования

[править | править код]
Side by side images of a candle flame (left) and a glowing translucent blue hemisphere of flame (right).
Сравнение между горением свечи на Земле (слева) и в условиях микрогравитации на МКС (справа)

В 1995 году среди российских научных и образовательных учреждений, промышленных организаций был объявлен конкурс на проведение научных исследований на российском сегменте МКС. По одиннадцати основным направлениям исследований было получено 406 заявок от восьмидесяти организаций. После оценки специалистами РКК «Энергия» технической реализуемости этих заявок в 1999 году была принята «Долгосрочная программа научно-прикладных исследований и экспериментов, планируемых на российском сегменте МКС». Программу утвердили президент РАН Ю. С. Осипов и генеральный директор Российского авиационно-космического агентства (ныне ФКА) Ю. Н. Коптев. Первые исследования на российском сегменте МКС были начаты первой пилотируемой экспедицией в 2000 году[158].

Согласно первоначальному проекту МКС, предполагалось выведение двух крупных российских исследовательских модулей (ИМ). Электроэнергию, необходимую для проведения научных экспериментов, должна была предоставлять Научно-энергетическая платформа (НЭП). Однако из-за недофинансирования и задержек при строительстве МКС все эти планы были отменены в пользу постройки единственного научного модуля, не требовавшего больших затрат и дополнительной орбитальной инфраструктуры. Значительная часть исследований, проводимых Россией на МКС, является контрактной или совместной с зарубежными партнёрами.

В настоящее время на МКС проводятся различные медицинские, биологические, физические исследования[159].

Исследования на американском сегменте

[править | править код]
Вирус Эпштейна — Барр, показанный с помощью техники окрашивания флюоресцентными антителами

США проводят широкую программу исследований на МКС. Многие из этих экспериментов являются продолжением исследований, проводившихся ещё в полётах шаттлов с модулями «Спейслаб» и в совместной с Россией программе «Мир — Шаттл». В качестве примера можно привести изучение патогенности одного из возбудителей герпеса, вируса Эпштейна — Барр. По данным статистики, 90 % взрослого населения США являются носителями латентной формы этого вируса. В условиях космического полёта происходит ослабление работы иммунной системы, вирус может активизироваться и стать причиной заболевания члена экипажа. Эксперименты по изучению вируса были начаты в полёте шаттла STS-108[160].

Европейские исследования

[править | править код]
Солнечная обсерватория, установленная на модуле «Коламбус»

На европейском научном модуле «Коламбус» предусмотрено 10 унифицированных стоек для размещения полезной нагрузки (ISPR). Часть из них, по соглашению, будет использоваться в экспериментах НАСА. Для нужд ЕКА в стойках установлено следующее научное оборудование: лаборатория Biolab для проведения биологических экспериментов, лаборатория Fluid Science Laboratory для исследований в области физики жидкости, установка для экспериментов по физиологии European Physiology Modules, а также универсальная стойка European Drawer Rack, содержащая оборудование для проведения опытов по кристаллизации белков (PCDF).

Во время STS-122 были установлены и внешние экспериментальные установки для модуля «Коламбус»: выносная платформа для технологических экспериментов EuTEF и солнечная обсерватория SOLAR. Планируется добавить внешнюю лабораторию по проверке ОТО и теории струн Atomic Clock Ensemble in Space[161][162].

Японские исследования

[править | править код]

В программу исследований, проводимых на модуле «Кибо», входит изучение процессов глобального потепления на Земле, озонового слоя и опустынивания поверхности, проведение астрономических исследований в рентгеновском диапазоне.

Запланированы эксперименты по созданию крупных и идентичных белковых кристаллов, которые призваны помочь понять механизмы болезней и разработать новые методы лечения. Кроме этого, будет изучаться действие микрогравитации и радиации на растения, животных и людей, а также будут проводиться опыты по робототехнике, в области коммуникаций и энергетики[163].

В апреле 2009 года японский астронавт Коити Ваката на МКС провёл серию экспериментов, которые были отобраны из числа предложенных простыми гражданами[164].

Корабли доставки

[править | править код]

Экипажи пилотируемых экспедиций на МКС доставляются до станции на ТПК «Союз» и Crew Dragon. Начиная с 2013 года полёты «Союзов» осуществляются по «короткой» шестичасовой схеме. До марта 2013 года все экспедиции летали на МКС по двухсуточной схеме[165]. До июля 2011 года доставка грузов, монтаж элементов станции, ротация экипажей, помимо кораблей «Союз», осуществлялись в рамках программы «Спейс шаттл», пока программа не была завершена.

Таблица первых и последних полётов пилотируемых и транспортных кораблей всех модификаций к МКС:

Корабль Тип Страна /
заказчик
Первый полёт
(дата стыковки)
Последний
полёт
Успешных
рейсов
Аварийных
рейсов
Комментарии
Действующие программы
Союз пилотируемый Россия / Роскосмос 2 ноября 2000 25 марта 2024 70 1 ротация экипажей и аварийная эвакуация
Прогресс грузовой Россия / Роскосмос 9 августа 2000 1 июня 2024 88 3 доставка грузов
HTV (Kounotori) грузовой Япония / JAXA 17 сентября 2009 25 мая 2020 9 0 доставка грузов
Cygnus грузовой Соединённые Штаты Америки / NASA 29 сентября 2013 6 августа 2024 21 1 доставка грузов
Crew Dragon (Dragon 2) пилотируемый Соединённые Штаты Америки / NASA 3 марта 2019 (без экипажа) 5 марта 2024 13 0 ротация экипажей и аварийная эвакуация
Cargo Dragon (Dragon 2) грузовой Соединённые Штаты Америки / NASA 7 декабря 2020 23 марта 2024 10 0 доставка и возвращение грузов
Starliner пилотируемый Соединённые Штаты Америки / NASA 20 мая 2022 (без экипажа) 6 июня 2024 2 1 ротация экипажей и аварийная эвакуация
Завершённые программы
Спейс шаттл пилотируемый Соединённые Штаты Америки / NASA 7 декабря 1998 10 июля 2011 37 0 ротация экипажей, доставка грузов и части модулей станции
ATV грузовой Европейский союз / ESA 3 апреля 2008 12 августа 2014 5 0 доставка грузов[166]
Dragon грузовой Соединённые Штаты Америки / NASA 25 мая 2012 9 марта 2020 21 1 доставка и возвращение грузов[167]

Планируемые

[править | править код]

По программе НАСА Commercial Resupply Services идёт разработка коммерческого проекта

JAXA

  • HTV-X — модифицированная версия грузового аппарата HTV (не ранее 2025 года).

Отменённые

[править | править код]
  • Российско-европейский корабль Crew Space Transportation System[англ.] создавался на основе «Союзов» для ротации экипажей и доставки грузов (не ранее 2017 года, отменён)[168].
  • Предполагалось, что частью программы НАСА под названием Commercial Orbital Transportation Services станет космический корабль K-1 Vehicle, созданный Rocketplane Kistler[англ.], его полёт был запланирован на 2009 год. 18 октября 2007 года НАСА разорвало соглашение с Rocketplane Kistler, так как компания не смогла привлечь дополнительные средства от частных инвесторов и удовлетворить требованиям герметичности для грузового модуля[169]. Впоследствии НАСА объявило, что оставшиеся из переданных проекту 175 миллионов долларов могут быть доступны другим компаниям[170]. 19 февраля 2008 года НАСА выделила Orbital Sciences Corporation 170 млн долларов на разработку космического корабля «Сигнус» в рамках своей программы COTS[171].
  • Также предполагалось, что кораблём для ротации экипажей и доставки грузов сможет стать с 2012 года российский космический челнок «Клипер», однако с 1 июня 2006 года в РКК «Энергия» все работы над этим кораблём были остановлены[172].
  • Российский пилотируемый корабль нового поколения «Орёл» (не ранее 2024 года, полёты к МКС отменены).

Вопросы безопасности

[править | править код]

По правилам безопасности на борту станции должно быть три скафандра — два основных и один запасной[источник не указан 2085 дней].

Космический мусор

[править | править код]
Отверстие в панели радиатора шаттла Индевор STS-118, образовавшееся в результате столкновения с космическим мусором

Поскольку МКС движется по сравнительно невысокой орбите, существует определённая вероятность столкновения станции или космонавтов, выходящих в открытый космос, с так называемым космическим мусором. К таковому могут быть причислены как крупные объекты вроде ракетных ступеней или выбывших из строя спутников, так и мелкие вроде шлака от твердотопливных ракетных двигателей, хладагентов из реакторных установок спутников серии УС-А, иных веществ и объектов[173]. Кроме того, дополнительную угрозу таят в себе природные объекты наподобие микрометеоритов[174]. Учитывая космические скорости на орбите, даже малые объекты способны нанести серьёзный урон станции, а в случае возможного попадания в скафандр космонавта микрометеориты могут пробить оболочку скафандра и вызвать разгерметизацию.

Чтобы избежать подобных столкновений, с Земли ведётся удалённое наблюдение за передвижением элементов космического мусора. Если на определённом расстоянии от МКС появляется такая угроза, экипаж станции получает соответствующее предупреждение, и выполняется так называемый «разворот (манёвр) уклонения» (англ. Debris Avoidance Manoeuvre). Двигательная установка выдаёт импульс, уводящий станцию на более высокую орбиту во избежание столкновения. Если опасность обнаружена слишком поздно, экипаж эвакуируется из МКС на космических кораблях «Союз». Частичная эвакуация по указанной причине происходила на МКС несколько раз, в частности, 6 апреля 2003, 13 марта 2009[175], 29 июня 2011[176] и 24 марта 2012 года[177].

В отсутствие массивного атмосферного слоя, который окружает людей на Земле, космонавты на МКС подвергаются более интенсивному облучению постоянными потоками космических лучей. За сутки члены экипажа получают дозу радиации в размере около 1 миллизиверта, что примерно равнозначно облучению человека на Земле за год[178]. Это приводит к повышенному риску развития злокачественных опухолей у космонавтов, а также ослаблению иммунной системы. Ослабление иммунитета космонавтов может способствовать распространению инфекционных заболеваний среди членов экипажа, особенно в замкнутом пространстве станции. Несмотря на предпринятые попытки по улучшению механизмов радиационной защиты, уровень проникновения радиации не сильно изменился по сравнению с показателями предыдущих исследований, проводившихся, например, на станции «Мир».

Во время мощных солнечных вспышек поток ионизирующего излучения на МКС может резко возрастать; при этом в некоторых случаях время от момента предупреждения экипажа может составлять лишь несколько минут. Так, 20 января 2005 года во время мощной солнечной вспышки и последовавшей через 15 минут после неё протонной бури экипаж МКС был вынужден перейти в укрытие в российском сегменте станции[179][180].

В среднем космонавты на МКС получают дозу 0,6 мЗв/сутки, за полгода пребывания на орбите они получают ~ 110 мЗв или 1,1 Зиверта. В атомной энергетике допустимым уровнем облучения для персонала считается доза 20 мЗв/год.[источник не указан 232 дня]

Переход с 360-километровой орбиты на 410-километровую позволил заметно снизить расход топлива на поддержание орбиты МКС, но увеличил дозу экипажа примерно на 20%.[источник не указан 232 дня]

Поверхность корпуса станции

[править | править код]

В ходе проверки внешней обшивки МКС на соскобах с поверхности корпуса и иллюминаторов были обнаружены следы жизнедеятельности морского планктона. Также подтвердилась необходимость очистки внешней поверхности станции в связи с загрязнениями от работы двигателей космических аппаратов[181].

Юридическая сторона

[править | править код]

Правовые уровни

[править | править код]
Обложка Межправительственного соглашения о космической станции, подписанного Дэниелом Голдином (бывшим директором НАСА)

Правовая структура, регулирующая юридические аспекты космической станции, является разноплановой и состоит из четырёх уровней:

  • Первым уровнем, устанавливающим права и обязанности сторон, является «Межправительственное соглашение о космической станции» (англ. Space Station Intergovernmental Agreement — IGA), подписанное 29 января 1998 года пятнадцатью правительствами[Комм 4] участвующих в проекте стран — Канадой, Россией, США, Японией и одиннадцатью государствами — членами Европейского космического агентства (Бельгией, Великобританией, Германией, Данией, Испанией, Италией[Комм 5], Нидерландами, Норвегией, Францией, Швейцарией и Швецией). В статье № 1 этого документа отражены основные принципы проекта:
    Это соглашение — долгосрочная международная структура на основе искреннего партнёрства, для всестороннего проектирования, создания, развития и долговременного использования обитаемой гражданской космической станции в мирных целях, в соответствии с международным правом[182]. При написании этого соглашения за основу был взят «Договор о космосе» от 1967 года[183], ратифицированный 98 странами, который заимствовал традиции международного морского и воздушного права[184].
  • Первый уровень партнёрства положен в основу второго уровня, который называется «Меморандумы о взаимопонимании» (англ. Memoranda of Understanding — MOUs). Эти меморандумы представляют собой соглашения между НАСА, ФКА, ЕКА, ККА и JAXA. Меморандумы используются для более подробного описания ролей и обязанностей партнёров. Причём, поскольку НАСА является назначенным управляющим МКС, напрямую между этими организациями отдельных соглашений нет, только с НАСА.
  • К третьему уровню относятся бартерные соглашения или договорённости о правах и обязанностях сторон — например, коммерческое соглашение 2005 года между НАСА и Роскосмосом, в условия которого входили одно гарантированное место для американского астронавта в составе экипажей кораблей «Союз» и часть полезного объёма для американских грузов на беспилотных «Прогрессах».
  • Четвёртый правовой уровень дополняет второй («Меморандумы») и вводит в действие отдельные положения из него. Примером его является «Кодекс поведения на МКС», который был разработан во исполнение пункта 2 статьи 11 Меморандума о взаимопонимании — правовые аспекты обеспечения субординации, дисциплины, физической и информационной безопасности и другие правила поведения для членов экипажа[185].

Структура собственности

[править | править код]

Структура собственности проекта не предусматривает для её членов чётко установленного процента на использование космической станции в целом. Согласно статье № 5 (IGA), юрисдикция каждого из партнёров распространяется только на тот компонент станции, который за ним зарегистрирован, а нарушения правовых норм персоналом внутри или вне станции подлежат разбирательству согласно законам той страны, гражданами которой те являются.

Интерьер модуля «Заря»
Трейси Колдуэлл в «Куполе»

Соглашения об использовании ресурсов МКС более сложные. Российские модули «Звезда», «Наука», «Поиск» и «Рассвет» изготовлены и принадлежат России, которая сохраняет право на их использование (аналогично и с модулем «Пирс» до затопления 26 июля 2021 г.). Модуль «Заря» построила и доставила на орбиту российская сторона, но на средства США, поэтому собственником данного модуля на сегодняшний день официально является НАСА. Для использования российских модулей и других компонентов станции страны-партнёры используют дополнительные двусторонние соглашения (вышеупомянутые третий и четвёртый правовые уровни).

Остальная часть станции (модули США, европейские и японские модули, ферменные конструкции, панели солнечных батарей и два робота-манипулятора) по согласованию сторон используются следующим образом (в % от общего времени использования):

  1. «Коламбус» — 51 % для ЕКА, 49 % для НАСА (46,7 % НАСА и 2,3 % ККА);
  2. «Кибо» — 51 % для JAXA, 49 % для НАСА (46,7 % НАСА и 2,3 % ККА);
  3. «Дестини» — 100 % для НАСА (99,7 % НАСА и 2,3 % ККА).

В дополнение к этому:

  • НАСА может использовать 100 % площади ферменных конструкций;
  • По соглашению с НАСА, ККА может использовать 2,3 % любых нероссийских компонентов[186];
  • Рабочее время экипажа, мощность от солнечных батарей, пользование вспомогательными услугами (погрузка/разгрузка, коммуникационные услуги) — 76,6 % для НАСА, 12,8 % для JAXA, 8,3 % для ЕКА и 2,3 % для ККА.

Правовые курьёзы

[править | править код]

До полёта первого космического туриста не существовало нормативной базы, регулирующей полёты в космос частных лиц. Но после полёта Денниса Тито страны-участницы проекта разработали «Принципы, касающиеся процессов и критериев отбора, назначения, подготовки и сертификации членов основных экипажей МКС и экспедиций посещения», которые определили такое понятие, как «Космический турист», и все необходимые вопросы для его участия в экспедиции посещения. В частности, такой полёт возможен только при наличии специфических медицинских показателей, психологической пригодности, языковой подготовки и денежного взноса[187].

В той же ситуации оказались и участники первой космической свадьбы в 2003 году, поскольку подобная процедура также не регулировалась никакими законами[188].

В 2000 году республиканское большинство в Конгрессе США приняло законодательный акт о нераспространении ракетных и ядерных технологий в Иране, согласно которому, в частности, США не могли приобретать у России оборудование и корабли, необходимые для строительства МКС. Однако после катастрофы «Колумбии», когда судьба проекта зависела от российских «Союзов» и «Прогрессов», 26 октября 2005 года конгресс был вынужден принять поправки в этот законопроект, снимающие все ограничения для «любых протоколов, соглашений, меморандумов о взаимопонимании или контрактов», до 1 января 2012 года[189][190].

Затраты на строительство и эксплуатацию МКС оказались гораздо больше, чем это изначально планировалось. В 2005 году, по оценке ЕКА, с начала работ над проектом МКС с конца 1980-х годов до его предполагаемого тогда окончания в 2010 году было бы израсходовано около 100 миллиардов евро (157 миллиардов долларов: для сравнения, такова цена запуска примерно трёх тысяч тяжёлых ракет, способных доставить на орбиту около 60 тысяч тонн грузов)[191]. Однако на сегодняшний день окончание эксплуатации станции планируется не ранее 2024 года, следовательно, суммарные затраты всех стран будут больше указанных.

Произвести точную оценку стоимости МКС очень непросто. К примеру, непонятно, как должен рассчитываться взнос России, так как Роскосмос использует значительно более низкие долларовые расценки, чем другие партнёры.

Оценивая проект в целом, больше всего расходов НАСА составляют комплекс мероприятий по обеспечению полётов и затраты на управление МКС. Другими словами, текущие эксплуатационные расходы составляют гораздо бо́льшую часть из потраченных средств, чем затраты на строительство модулей и других устройств станции, на подготовку экипажей и на корабли доставки. (см. ниже)

Расходы НАСА на МКС без учёта затрат на «Шаттлы» (см. ниже) с 1994 по 2005 год составили 25,6 миллиарда долларов[192]. На 2005 и 2006 годы пришлось примерно 1,8 миллиарда долларов.

Оценить постатейный перечень затрат НАСА можно, например, по опубликованному космическим агентством документу[193], из которого видно, как распределились 1,8 миллиарда долларов, потраченных НАСА на МКС в 2005 году:

  • Исследование и разработка нового оборудования — 70 миллионов долларов. Эта сумма была, в частности, направлена на разработки навигационных систем, на информационное обеспечение, на технологии по снижению загрязнения окружающей среды.
  • Обеспечение полётов — 800 миллионов долларов. В эту сумму вошли, из расчёта на каждый корабль: 125 млн долларов на программное обеспечение, выходы в открытый космос, снабжение и техническое обслуживание челноков; дополнительно 150 млн долларов были потрачены на сами полёты, бортовое радиоэлектронное оборудование и на системы взаимодействия экипажа и корабля; оставшиеся 250 млн долларов пошли на общее управление МКС.
  • Запуски кораблей и проведение экспедиций — 125 млн долларов на предстартовые операции на космодроме; 25 млн долларов на медицинское обслуживание; 300 млн долларов израсходовано на управление экспедициями;
  • Программа полётов — 350 миллионов долларов потрачены на выработку программы полётов, на обслуживание наземного оборудования и программного обеспечения, для гарантированного и бесперебойного доступа на МКС.
  • Грузы и экипажи — 140 миллионов долларов были потрачены на приобретение расходных материалов, а также на возможность осуществлять доставку грузов и экипажей на российских «Прогрессах» и «Союзах». Согласно заявлению вице-президента США Майкла Пенса, стоимость одного места на корабле «Союз» в 2018 г. обходилась НАСА около 85 миллионов долларов.[194]

Принимая во внимание планы НАСА на период с 2011 по 2017 год (см. выше), в первом приближении среднегодовой расход составляет 2,5 млрд долларов, что на последующий период с 2006 по 2017 годы составит 27,5 миллиардов долларов. Зная расходы на МКС с 1994 по 2005 год (25,6 миллиарда долларов) и сложив эти цифры, получим итоговый официальный результат — 53 миллиарда долларов.

В эту сумму не входят значительные затраты на проектирование космической станции «Фридом» в 1980-х и начале 1990-х годов и участие в совместной программе с Россией по использованию станции «Мир» в 1990-х годах. Наработки этих двух проектов многократно использовались при строительстве МКС.

ЕКА вычислило, что его вклад за 15 лет существования проекта составит 9 млрд евро[195]. Затраты на модуль «Коламбус» превышают 1,4 млрд евро (приблизительно 2,1 млрд долларов), включая затраты на наземные системы контроля и управления. Полные затраты на разработку ATV составляют приблизительно 1,35 млрд евро[196], при этом каждый запуск «Ариан-5» стоит приблизительно 150 млн евро.

Разработка японского экспериментального модуля, главного вклада JAXA в МКС, стоила приблизительно 325 миллиардов иен (примерно 2,8 миллиарда долларов)[197].

В 2005 году JAXA ассигновало приблизительно 40 миллиардов иен (350 миллионов USD) в программу МКС[198]. Ежегодные эксплуатационные расходы японского экспериментального модуля составляют 350—400 миллионов долларов. Кроме того, JAXA обязалось разработать и запустить транспортный корабль H-II, полная стоимость разработки которого — 1 миллиард долларов. Расходы JAXA за 24 года участия в программе МКС превысят 10 миллиардов долларов.

Значительная часть бюджета Российского космического агентства расходуется на МКС. С 1998 года было совершено более трёх десятков полётов кораблей «Союз» и «Прогресс», которые с 2003 года стали основными средствами доставки грузов и экипажей. Однако вопрос, сколько Россия тратит на станцию (в долларах США), не прост. Существующие в настоящее время[когда?] 2 модуля на орбите — производные программы «Мир», и поэтому затраты на их разработку намного ниже, чем для других модулей, однако в таком случае, по аналогии с американскими программами, следует также учесть затраты на разработку соответствующих модулей станции «Мир». Кроме того, обменный курс между рублём и долларом не даёт адекватно оценить действительные затраты Роскосмоса[источник не указан 2085 дней].

Примерное представление о расходах российского космического агентства на МКС можно получить, исходя из его общего бюджета, который на 2005 год составил 25,156 миллиарда рублей, на 2006 — 31,806, на 2007 — 32,985 и на 2008 — 37,044 миллиарда рублей[199]. Таким образом, на станцию уходит менее полутора миллиардов долларов США в год.

Канадское космическое агентство (Canadian Space Agency, CSA) является постоянным партнёром НАСА, поэтому Канада с самого начала участвует в проекте МКС. Вклад Канады в МКС — это мобильная система техобслуживания, состоящая из трёх частей: подвижной тележки, которая может передвигаться вдоль ферменной конструкции станции, робота-манипулятора «Канадарм2» (Canadarm2), который установлен на подвижной тележке, и специального манипулятора «Декстр» (Dextre). По оценкам, за прошедшие 20 лет CSA вложило в станцию 1,4 миллиарда канадских долларов[200].

За всю историю космонавтики МКС — самый дорогой и, пожалуй, самый критикуемый космический проект. По профессору П. В. Турчину, МКС является примером достигнутого неимоверного уровня сотрудничества; проект по её созданию предполагал координацию деятельности около трех миллионов человек, что по числу вовлеченных лиц значительно превосходило любые совместные проекты, реализованные предыдущими цивилизациями; такой координации, утверждает Турчин, трудно достичь, но её легко можно потерять[201].

Критика в США

Критика американской стороны в основном направлена на стоимость проекта, которая уже превышает 100 млрд долларов. Эти деньги, по мнению критиков, можно было бы с бо́льшей пользой потратить на автоматические (беспилотные) полёты для исследования ближнего космоса или на научные проекты, проводимые на Земле.

В ответ на некоторые из этих критических замечаний защитники пилотируемых космических полётов говорят, что критика проекта МКС является близорукой и что отдача от пилотируемой космонавтики и исследований в космосе в материальном плане выражается миллиардами долларов. Джером Шни (англ. Jerome Schnee) оценил косвенную экономическую составляющую от дополнительных доходов, связанных с исследованием космоса, как во много раз превышающую начальные государственные инвестиции[202].

Однако в заявлении Федерации американских учёных утверждается, что норма прибыли НАСА от дополнительных доходов фактически очень низка, за исключением разработок в аэронавтике, которые улучшают продажи самолётов[203].

Критики также говорят, что НАСА часто причисляет к своим достижениям разработки сторонних компаний, идеи и разработки которых, возможно, были использованы НАСА, но имели другие предпосылки, независимые от космонавтики. Действительно же полезными и приносящими доход, по мнению критиков, являются беспилотные навигационные, метеорологические и военные спутники[204]. НАСА широко освещает дополнительные доходы от строительства МКС и от работ, выполненных на ней, тогда как официальный список расходов НАСА намного более краток и секретен[205].

Критика научных аспектов

По мнению профессора Роберта Парка, большинство из запланированных научных исследований не имеет первоочередной важности. Он отмечает, что цель большинства научных исследований в космической лаборатории — провести их в условиях микрогравитации, что можно сделать гораздо дешевле в условиях искусственной невесомости в специальном самолёте[англ.], который летит по параболической траектории[206].

В планы строительства МКС входили два наукоёмких компонента — магнитный альфа-спектрометр AMS и модуль центрифуг. Первый работает на станции с мая 2011 года. От создания второго отказались в 2005 году в результате коррекции планов завершения строительства станции. Проводимые на МКС узкоспециализированные эксперименты ограничены отсутствием соответствующей аппаратуры. Например, в 2007 году проводились исследования влияния факторов космического полёта на организм человека, затрагивавшие такие аспекты, как почечные камни, циркадный ритм (цикличность биологических процессов в организме человека), влияние космического излучения на нервную систему человека[207][208][209]. Критики утверждают, что у этих исследований небольшая практическая ценность, поскольку реалии сегодняшнего исследования ближнего космоса — беспилотные автоматические корабли.

Критика технических аспектов

Американский журналист Джефф Фауст[англ.] утверждал, что для технического обслуживания МКС требуется слишком много дорогих и опасных выходов в открытый космос[210].

Тихоокеанское астрономическое общество в начале проектирования МКС обращало внимание на слишком высокое наклонение орбиты станции. Если для российской стороны это удешевляет запуски, то для американской это невыгодно. Уступка, которую НАСА сделало для РФ из-за географического положения Байконура, в конечном итоге, возможно, увеличит суммарные затраты на строительство МКС[211].

В целом дебаты в американском обществе сводятся к обсуждению целесообразности МКС, в аспекте космонавтики в более широком смысле. Некоторые защитники утверждают, что кроме её научной ценности, это — важный пример международного сотрудничества. Другие утверждают, что МКС потенциально, при должных усилиях и усовершенствованиях, могла бы сделать полёты к Луне и Марсу более экономичными. Так или иначе, основная суть ответов на критику заключается в том, что трудно ожидать серьёзной финансовой отдачи от МКС; скорее, её главное предназначение — стать частью общемирового расширения возможностей космических полётов.

Критика в России

В России критика проекта МКС в основном нацелена на неактивную позицию руководства Федерального космического агентства (ФКА) по отстаиванию российских интересов по сравнению с американской стороной, которая всегда чётко следит за соблюдением своих национальных приоритетов.

Например, журналисты задают вопросы о том, почему в России нет собственного проекта орбитальной станции и почему тратятся деньги на проект, собственником которого являются США, в то время как эти средства можно было бы пустить на полностью российскую разработку. По мнению руководителя РКК «Энергия» Виталия Лопоты, причиной этого являются контрактные обязательства и недостаток финансирования[212].

В своё время станция «Мир» стала для США источником опыта в строительстве и исследованиях на МКС, а после аварии «Колумбии» российская сторона, действуя согласно партнёрскому соглашению с НАСА и доставив на станцию оборудование и космонавтов, практически в одиночку спасла проект. Эти обстоятельства породили критические высказывания в адрес ФКА о недооценке роли России в проекте. Так, например, космонавт Светлана Савицкая отмечала, что научно-технический вклад России в проект недооценён и что партнёрское соглашение с НАСА не отвечает национальным интересам в финансовом плане[213]. Однако при этом стоит учесть, что в начале строительства МКС российский сегмент станции оплачивали США, предоставляя кредиты, погашение которых предусмотрено только к окончанию строительства[214].

Говоря о научно-технической составляющей, журналисты отмечали малое количество новых научных экспериментов, проводимых на станции, объясняя это тем, что Россия не может изготовить и поставить на станцию нужное оборудование по причине отсутствия средств[215]. По мнению Виталия Лопоты, высказанному в 2008 году, ситуация изменится, когда одновременное присутствие космонавтов на МКС увеличится до 6 человек[212]. Помимо этого, поднимаются вопросы о мерах безопасности в форс-мажорных ситуациях, связанных с возможной потерей управления станцией. Так, по мнению космонавта Валерия Рюмина, опасность состоит в том, что если МКС станет неуправляемой, то её нельзя будет затопить, как станцию «Мир»[214].

По мнению критиков, международное сотрудничество, которое является одним из основных аргументов в пользу станции, также является спорным. Как известно, по условию международного соглашения, страны не обязаны делиться своими научными разработками на станции. За 2006—2007 годы в космической сфере между Россией и США не было новых больших инициатив и крупных проектов[216]. Кроме того, многие полагают, что страна, вкладывающая в свой проект 75 % средств, вряд ли захочет иметь полноправного партнёра, который к тому же является её основным конкурентом в борьбе за лидирующее положение в космическом пространстве[217].

Также критикуется, что значительные средства были направлены на пилотируемые программы, а ряд программ по разработке спутников провалился[218]. В 2003 году Юрий Коптев в интервью «Известиям» заявил, что в угоду МКС космическая наука опять осталась на Земле[218].

В 2014—2015 годах среди экспертов космической промышленности России сложилось мнение, что практическая польза от орбитальных станций уже исчерпана — за прошедшие десятилетия сделаны все практически важные исследования и открытия:

Эпоха орбитальных станций, начавшаяся в 1971 году, уйдёт в прошлое. Эксперты не видят практической целесообразности ни в поддержании МКС после 2020 года, ни в создании альтернативной станции со схожим функционалом: «Научная и практическая отдача от российского сегмента МКС существенно ниже, чем от орбитальных комплексов „Салют-7“ и „Мир“. Научные организации не заинтересованы в повторении уже сделанного».

В апреле 2019 года ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев заявил, что с научной точки зрения Международная космическая станция — «пустая трата времени». По его словам, последние важные открытия принадлежат роботам, а люди в космосе просто не нужны, на МКС космонавты в основном занимаются собственным жизнеобеспечением: «Изучают, кто у них там дырки просверливает. Тратятся миллиарды — не рублей, а долларов, но научный выход — ноль»[219].

Наблюдение за МКС

[править | править код]

Размеры станции достаточны для её наблюдения невооружённым глазом с поверхности Земли. МКС наблюдается как достаточно яркая звезда, довольно быстро идущая по небу приближённо с запада на восток (угловая скорость около 1 градуса в секунду[220]). Время пролёта МКС составляет до нескольких минут в зависимости от её максимальной высоты над горизонтом[221], при этом МКС хорошо видна только перед восходом или после заката, когда небо достаточно тёмное, а сама станция хорошо освещена солнцем, тогда как в иные моменты её относительная яркость недостаточна для наблюдения[222]. В зависимости от точки наблюдения максимальное значение её звёздной величины может принимать значение от −4m до 0m. Европейское космическое агентство, совместно с сайтом «www.heavens-above.com», предоставляет возможность всем желающим узнать расписание пролётов МКС над определённым населённым пунктом планеты. Зайдя на страницу сайта, посвящённую МКС, и введя латиницей название интересующего города, можно получить точное время и графическое изображение траектории полёта станции над ним на ближайшие дни[223]. Также расписание пролётов можно посмотреть на www.amsat.org или в приложении «МКС детектор» (имеется функция оповещений). Траекторию полёта МКС в реальном времени можно увидеть на сайте Федерального космического агентства. Также можно использовать программу «Heavensat» (или «Orbitron»). На сайте www.iss.stormway.ru транслируется видео с камер, установленных на борту МКС, в режиме реального времени, а также отображается информация о текущем положении станции.

Внешние видеофайлы
Пролёты Международной космической станции на фоне Луны и Солнца (ISS transits).

Изображения Международной космической станции, полученные с помощью адаптивной оптической системы:

МКС в художественных произведениях

[править | править код]
  • В книге Нила Стивенсона «Семиевие» большая часть действия разворачивается на МКС.
  • В сериале «Звёздный путь: Энтерпрайз» (2001—2005) в начальном ролике к каждой серии начиная с 1-го сезона показана собранная МКС на орбите Земли, как одно из величайших достижений человечества на пути к созданию космического корабля «Энтерпрайз». Факт интересен тем, что в момент выпуска всего сериала с 2001—2005 МКС ещё не была собрана, а её изображение имеет законченный вид, более соответствующий МКС в 2011 году.
  • В сериале «Звёздные врата: SG-1» в 3-й серии 8-го сезона МКС с российским космонавтом Анатолием Константиновым на борту маневрирует для облёта обломков флота Анубиса.
  • В сериале «Теория Большого взрыва» в 6-м сезоне Говард Воловиц был одним из астронавтов МКС.
  • В научно-популярном сериале «Жизнь после людей» станция падает на Землю спустя 3 года после исчезновения людей, поскольку её орбиту некому будет корректировать.
  • В японском аниме-сериале «Лунная миля» (2007) главный герой, стремившийся стать астронавтом, оказывается на МКС.
  • В фантастическом фильме «Напролом» орбитальная станция «MS1» (космическая тюрьма) в результате потери управления сталкивается с МКС.
  • В художественном фильме «Миссия на Марс» (2000) герои передают на МКС информацию о геологической находке на Марсе.
  • В художественном фильме «Гравитация» (2013) МКС полностью разрушается в результате столкновения с обломками космических спутников.
  • В книге Александра Прозорова «Профессия: шерп» экипаж «Касатки» забирает космонавтов с МКС.
  • В комедийном сериале «Последний человек на Земле» Майк Миллер был единственным астронавтом на МКС.
  • В компьютерной игре «Call of Duty: Modern Warfare 2» в одной из миссий капитан ОТГ-141 Джон Прайс производит запуск межконтинентальной баллистической ракеты, взрыв которой уничтожает МКС.
  • В компьютерной игре «Far Cry New Dawn» в режиме «Вылазка» есть миссия «Место падения МКС»
  • В японском аниме-сериале «Доктор Стоун» шесть членов экипажа на борту МКС пережили окаменение. Позже МКС была оставлена, и астронавты приземлились недалеко от Японии в попытке восстановить контакт с человечеством.
  • В художественном фильме «Вызов» (2023) хирург Евгения Беляева отправляется на МКС, чтобы провести операцию космонавту. Часть сцен для фильма была отснята командой профессиональных кинематографистов на самой станции.

Примечания

[править | править код]

Комментарии

  1. Бразилия отказалась от участия из-за финансовых трудностей
  2. Великобритания также была в числе стран, подписавших «Межправительственное соглашение о космической станции», но в дальнейшем участия в программе не принимала
  3. По закону всемирного тяготения притяжение между телами падает обратно пропорционально квадрату расстояния между ними. Значит, сила тяжести на станции меньше в R² / (R + r раз, где R — радиус Земли, а r — высота орбиты МКС. Взяв R = 6370 км и r = 340...410 км, получим 0,90…0,88
  4. Шестнадцатая страна проекта — Бразилия. Бразильское космическое агентство участвует в проекте по отдельному контракту с НАСА.
  5. Итальянское космическое агентство имеет также дополнительный контракт с НАСА, независимо от ЕКА.

Источники

  1. International Space Station Facts and Figures (англ.). НАСА (2 ноября 2020). Дата обращения: 8 декабря 2020. Архивировано 18 декабря 2019 года.
  2. Научная интернет-энциклопедия. daviddarling.info Архивная копия от 17 сентября 2008 на Wayback Machine (англ.)
  3. Астро-подробности: Статистика МКС. pbs.org Архивная копия от 23 октября 2008 на Wayback Machine (англ.)
  4. 1 2 3 4 5 Mark Garcia. International Space Station Facts and Figures. NASA (28 апреля 2016). Дата обращения: 16 июля 2021. Архивировано 6 июня 2022 года.
  5. 1 2 Как работается на станции. science.howstuffworks.com Архивная копия от 12 декабря 2008 на Wayback Machine (англ.)
  6. МКС: состояние на 12 марта 2003 г spaceref.com (недоступная ссылка) (англ.)
  7. 1 2 ISS - Orbit. www.heavens-above.com. Дата обращения: 29 мая 2021. Архивировано 29 мая 2021 года.
  8. Данные МКС. pdlprod3.hosc.msfc.nasa.gov Архивная копия от 22 апреля 2008 на Wayback Machine (англ.)
  9. Высоту орбиты МКС увеличили на два километра. Роскосмос (14 мая 2022).
  10. МЕЖДУНАРО́ДНАЯ КОСМИ́ЧЕСКАЯ СТА́НЦИЯ / В. П. Легостаев, Е. А. Микрин, И. В. Сорокин // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  11. International Space Station (англ.). Каталог NSSDC ID. Дата обращения: 14 сентября 2011. Архивировано 22 января 2012 года.
  12. Archive of official government documents related to the ISS (англ.). International Space Station Guide. Дата обращения: 15 сентября 2011. Архивировано 22 января 2012 года.
  13. European Participation (англ.). Сайт ЕКА. Дата обращения: 17 января 2009. Архивировано 22 января 2012 года.
  14. Most expensive man-made object (брит. англ.). Guinness World Records. Дата обращения: 16 июля 2021. Архивировано 10 июня 2021 года.
  15. World’s most expensive: car, house, NFT, painting and more (англ.). Guinness World Records. Дата обращения: 20 января 2022. Архивировано 20 января 2022 года.
  16. Международная космическая станция.Справка. РИА Новости (26 июля 2010). Дата обращения: 13 декабря 2013. Архивировано 8 января 2014 года.
  17. Российский космонавт Кононенко стал командиром МКС. Интерфакс (10 марта 2024). Дата обращения: 11 марта 2024. Архивировано 10 марта 2024 года.
  18. Reagan ISS. history.nasa.gov. Дата обращения: 12 марта 2022. Архивировано 30 декабря 2021 года.
  19. 1 2 Лаборатория доставлена — распишитесь, или Полёт STS-98. Дата обращения: 23 ноября 2021. Архивировано 23 ноября 2021 года.
  20. 1 2 Русский космос. 2018-11
  21. Экипаж «Альфы» переходит на космическую станцию Архивная копия от 14 февраля 2009 на Wayback Machine // inopressa.ru
  22. Влияние программы МКС на космическую промышленность России Архивная копия от 4 марта 2012 на Wayback Machine // novosti-kosmonavtiki.ru
  23. ""Союз ТМА-15" пристыковался к МКС". Лента.ру. 2009-05-29. Архивировано 12 мая 2012. Дата обращения: 5 июня 2009.
  24. Новый научный модуль "Поиск" доставлен на МКС. РИА Новости (12 ноября 2009). Архивировано 11 августа 2011 года.
  25. «Прогресс М-МИМ2» в составе МКС (недоступная ссылка — история). Федеральное космическое агентство (12 ноября 2009). (недоступная ссылка)
  26. 1 2 США – Россия: космическое партнёрство. Роскосмос. Дата обращения: 18 мая 2010. Архивировано из оригинала 7 августа 2011 года.
  27. «Рассвет» на пути к МКС. Федеральное космическое агентство (14 мая 2010). Архивировано 7 августа 2011 года.
  28. BEAM is successfully attached to the Space_Station Архивная копия от 2 июня 2020 на Wayback Machine (англ.)
  29. NASA: американский надувной модуль будет присоединён к МКС 16 апреля Архивная копия от 13 мая 2016 на Wayback Machine // ТАСС
  30. Mark Garcia. Starliner Stands Down, Station Crew Works Physics and Nauka Transfers (англ.). NASA. NASA (4 августа 2021). Дата обращения: 4 августа 2021. Архивировано 4 августа 2021 года.
  31. Модуль «Наука» состыковался с МКС. habr.com. Дата обращения: 7 августа 2021. Архивировано 7 августа 2021 года.
  32. История создания МКС. Справка Архивная копия от 17 октября 2008 на Wayback Machine // rian.ru
  33. История создания и жизни МКС gazeta.ru Архивная копия от 21 апреля 2008 на Wayback Machine (рус.)
  34. Почему МКС не стала «Альфой» Архивная копия от 9 февраля 2009 на Wayback Machine // rian.ru
  35. Совместное заявление Многостороннего совета по управлению МКС, представляющее обобщённую точку зрения на перспективы Международной космической станции от 3 февраля 2010 г. «Роскосмос». Дата обращения: 4 февраля 2010. Архивировано из оригинала 30 августа 2011 года.
  36. Работа на МКС будет продолжаться как минимум до 2024 года. www.astronews.ru. Дата обращения: 12 марта 2022. Архивировано 28 октября 2020 года.
  37. Роскосмос: Россия и США решили продлить эксплуатацию МКС до 2024 года. РИА Новости. Дата обращения: 28 марта 2015. Архивировано 28 марта 2015 года.
  38. Рогозин: Россия не будет продлевать эксплуатацию МКС после 2020 года. «Газета.Ru». Дата обращения: 15 мая 2014. Архивировано 17 мая 2014 года.
  39. Роскосмос и NASA договорились создать новую орбитальную станцию. Дата обращения: 11 июня 2019. Архивировано 23 марта 2019 года.
  40. Роскосмос продолжает переговоры с партнёрами по продлению срока службы МКС. Новости космонавтики (12 октября 2020). Дата обращения: 12 октября 2020. Архивировано 13 октября 2020 года.
  41. Новости. МКС: СТО ТЫСЯЧ ВИТКОВ ВОКРУГ ЗЕМЛИ. «Роскосмос». Дата обращения: 20 мая 2016. Архивировано 22 мая 2016 года.
  42. «На МКС появился „охотник“ за грозами, инструмент Space Storm Hunter» Архивная копия от 18 апреля 2018 на Wayback Machine DailyTechInfo, 17 апреля 2018
  43. Crew Spending Weekend in Station's Russian Segment. NASA.gov. Дата обращения: 15 марта 2021. Архивировано 17 марта 2021 года., August 20, 2020
  44. На МКС продолжилось падение атмосферного давления Архивная копия от 13 марта 2021 на Wayback Machine, 13 марта 2021
  45. Российский сегмент МКС выработал ресурс на 80%. РИА Новости (21 апреля 2021). Дата обращения: 21 апреля 2021. Архивировано 21 апреля 2021 года.
  46. Michelle, Star (2021-05-31). "Space Debris Has Hit And Damaged The International Space Station". Science Alert. Архивировано 5 июля 2021. Дата обращения: 31 мая 2021.
  47. NASA сообщило о новых местах утечки воздуха в российском модуле МКС Архивная копия от 19 июля 2021 на Wayback Machine, 18 июля 2021
  48. Рогозин объяснил низкое давление в модуле на МКС Архивная копия от 31 июля 2021 на Wayback Machine, 31 июля 2021
  49. В НАСА рассказали о состоянии МКС после инцидента с модулем «Наука». РИА Новости (30 июля 2021). Дата обращения: 31 июля 2021. Архивировано 31 июля 2021 года.
  50. В российском модуле на МКС упало давление Архивная копия от 31 июля 2021 на Wayback Machine, 31 июля 2021
  51. «Русский космос» № 30 Архивная копия от 21 января 2022 на Wayback Machine, стр.21
  52. Российский сегмент МКС. Справочник пользователя. www.energia.ru. Дата обращения: 13 марта 2019. Архивировано 7 апреля 2019 года.
  53. Константин Терехов. [riafan.ru/1162253-na-mks-ustanovyat-rossiiskii-nauchnyi-kompleks-dlya-sozdaniya-karty-neba На МКС установят российский научный комплекс для создания карты неба]. Федеральное агентство новостей No.1. Дата обращения: 24 марта 2019.
  54. Россия выйдет из проекта МКС с 2025 года. РИА Новости (18 апреля 2021). Дата обращения: 5 марта 2022. Архивировано 5 марта 2022 года.
  55. "Russia says it'll withdraw from International Space Station after 2024". Washington Post. Архивировано 27 июля 2022. Дата обращения: 28 июля 2022.
  56. Biden-Harris Administration Extends Space Station Operations Through 2030 Архивная копия от 1 января 2022 на Wayback Machine // НАСА, 31 декабря 2021 (англ.)
  57. В РКК разрабатывают план затопления МКС Архивная копия от 3 февраля 2022 на Wayback Machine // astronews.ru
  58. РКК «Энергия» предложила создать российскую космическую станцию Архивная копия от 27 ноября 2020 на Wayback Machine // РИА Новости, 26 ноя 2020
  59. Международная космическая станция - 15 лет на орбите. Пресс-служба Роскосмоса (20 ноября 2013). Дата обращения: 20 ноября 2013. Архивировано 27 ноября 2013 года.
  60. Российский сегмент МКС Функциональный грузовой блок "Заря". РКК «Энергия». Архивировано 23 января 2019 года.
  61. О РАБОТЕ ФГБ «ЗАРЯ». ГКНПЦ им М.В. Хруничева (18 января 2019). Архивировано 7 августа 2021 года.
  62. Zarya. NASA. Архивировано 28 марта 2019 года.
  63. Новости РКК «Энергия» от 6 июня 2007 года. energia.ru Архивная копия от 7 февраля 2009 на Wayback Machine (рус.)
  64. "STATUS REPORT : STS-130-18" (англ.). НАСА. 2010-02-16. Архивировано 20 февраля 2010. Дата обращения: 17 февраля 2010.
  65. 1 2 "STATUS REPORT : STS-130-19" (англ.). НАСА. 2010-02-16. Архивировано 20 февраля 2010. Дата обращения: 17 февраля 2010.
  66. EXPRESS Racks 1 and 2 nasa.gov Архивная копия от 4 июля 2008 на Wayback Machine (англ.)
  67. Канадская «рука» на МКС. novosti-kosmonavtiki.ru Архивная копия от 4 марта 2012 на Wayback Machine (рус.)
  68. STS-133 MISSION SUMMARY (англ.). НАСА. Дата обращения: 2 марта 2011. Архивировано 11 августа 2011 года.
  69. Американский надувной модуль BEAM пристыковался к МКС. www.interfax.ru. Дата обращения: 15 января 2018. Архивировано 15 января 2018 года.
  70. Международная космическая станция Архивная копия от 5 марта 2019 на Wayback Machine // Роскосмос
  71. REFERENCE GUIDE TO THE INTERNATIONAL SPACE STATION Архивная копия от 4 мая 2021 на Wayback Machine, 2015 г., стр. 33
  72. Российский сегмент МКС: МАЛЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОДУЛЬ «ПОИСК» Архивная копия от 31 января 2022 на Wayback Machine // roscosmos.ru
  73. ESA Human Spaceflight | Projects » Cupola. web.archive.org (29 января 2008). Дата обращения: 27 января 2022. Архивировано 29 января 2008 года.
  74. Cupola. www.esa.int. Дата обращения: 10 декабря 2021. Архивировано 10 декабря 2021 года.
  75. Служебный модуль «Звезда» Архивная копия от 10 мая 2019 на Wayback Machine // РКК «Энергия»
  76. Малый исследовательский модуль «Поиск» Архивная копия от 17 февраля 2022 на Wayback Machine // РКК «Энергия»
  77. Экскурсия по МКС. Часть 2. www.youtube.com. Дата обращения: 23 января 2022. Архивировано 23 января 2022 года.
  78. NASA. U.S. Destiny Laboratory. NASA (2003). Дата обращения: 7 октября 2008. Архивировано 9 июля 2007 года.
  79. Более 30 рабочих мест будет оборудовано в модуле «Наука» на МКС Архивная копия от 23 января 2022 на Wayback Machine // ТАСС Наука
  80. На иллюминаторах российского сегмента МКС нашли глубокие полости. lenta.ru. Дата обращения: 11 февраля 2022. Архивировано 11 февраля 2022 года.
  81. Why are there no windows on the ISS looking away from Earth? (англ.)
  82. На иллюминаторах МКС нашли глубокие полости. Известия (1 августа 2021). Дата обращения: 29 января 2022. Архивировано 29 января 2022 года.
  83. Иллюминаторы МКС защитят от космического мусора новейшим покрытием. ТАСС. Дата обращения: 29 января 2022. Архивировано 29 января 2022 года.
  84. НАУКА На МКС появятся «стекольщики». Известия (1 декабря 2017). Дата обращения: 16 февраля 2022. Архивировано 16 февраля 2022 года.
  85. Российские космонавты протёрли иллюминаторы МКС. РИА Новости (29 мая 2019). Дата обращения: 29 января 2022. Архивировано 29 января 2022 года.
  86. 1 2 3 4 5 Лантратов К. Солнечные «крылья» для МКС // Новости космонавтики. — ФГУП ЦНИИмаш, 2001. — № 2. Архивировано 4 марта 2012 года.
  87. Служебный модуль «Звезда». ГКНПЦ им. Хруничева. Дата обращения: 11 июня 2017. Архивировано 27 мая 2011 года.
  88. Модуль «Заря». ГКНПЦ им. Хруничева. Дата обращения: 12 апреля 2010. Архивировано из оригинала 27 мая 2011 года.
  89. Solar Power (англ.). Boeing. Дата обращения: 18 марта 2012. Архивировано 11 августа 2011 года.
  90. Валентин Бобков. Родословная «Союза» // Крылья Родины. — 1991. — № 1. Архивировано 26 октября 2010 года.
  91. The architecture of the electric power system of the International Space Station and its application as a platform for power technology development (PDF). Институт инженеров электротехники и электроники. Дата обращения: 12 апреля 2010. Архивировано 11 августа 2011 года.
  92. В.Истомин. Хроника полёта экипажа МКС-4 // Новости космонавтики. — ФГУП ЦНИИмаш, 2002. — № 6. Архивировано 10 апреля 2010 года.
  93. Анатолий Зак. SPACECRAFT:Manned: ISS: Russian segment: NEP (англ.). russianspaceweb.com. Архивировано 6 ноября 2014 года.
  94. Анатолий Зак. Science and Power Module, NEM (англ.). russianspaceweb.com. Архивировано 8 апреля 2016 года.
  95. Расшифровка встречи глав космических агентств 2 марта 2006 года (англ.) (pdf). НАСА. Дата обращения: 12 апреля 2010. Архивировано 11 августа 2011 года.
  96. Spread Your Wings, It's Time to Fly (англ.). НАСА (26 июля 2006). Дата обращения: 21 сентября 2006. Архивировано 11 августа 2011 года.
  97. Лантратов К. На МКС - новые элементы // Новости космонавтики. — ФГУП ЦНИИмаш, 2000. — № 12. Архивировано 17 января 2012 года.
  98. Space-track. TLE данные МКС. space-track.org (29 мая 2021). Дата обращения: 29 мая 2021. Архивировано 29 мая 2021 года.
  99. Heavens-above. МКС - Орбита. heavens-above.com (29 мая 2021). Дата обращения: 29 мая 2021. Архивировано 29 мая 2021 года.
  100. Celestrack. TLE данные космических станций. celestrak.com (29 мая 2021). Дата обращения: 29 мая 2021. Архивировано 29 мая 2021 года.
  101. Thomas B. Miller. Nickel-Hydrogen Battery Cell Life Test Program Update for the International Space Station (англ.). НАСА (24 апреля 2000). Дата обращения: 27 ноября 2009. Архивировано из оригинала 11 августа 2011 года.
  102. 1 2 G. Landis & C-Y. Lu. Solar Array Orientation Options for a Space Station in Low Earth Orbit (англ.) // Journal of Propulsion and Power : journal. — 1991. — Vol. 7, no. 1. — P. 123—125. — ISSN 0748-4658. — doi:10.2514/3.23302.
  103. На МКС зафиксировали проблему в системе энергоснабжения. Интерфакс (29 апреля 2019). Дата обращения: 5 марта 2022. Архивировано 17 февраля 2022 года.
  104. European Users Guide to Low Gravity Platforms (англ.) (PDF). European Space Agency. Дата обращения: 26 ноября 2008. Архивировано из оригинала 24 июня 2006 года.
  105. П.К. Волков. Конвекция в жидкости на земле и в космосе // Природа. — Наука, 2001. — № 11. Архивировано 19 августа 2019 года.
  106. How Space Stations Work Архивная копия от 12 декабря 2008 на Wayback Machine by Craig Freudenrich, Ph.D. at Howstuffworks. Accessed January 2008
  107. The Air Up There Архивная копия от 14 ноября 2006 на Wayback Machine. NASAexplores: April 29, 2004. Accessed January 2008.
  108. 1 2 Communications and Tracking. Boeing. Дата обращения: 30 ноября 2009. Архивировано 11 июня 2008 года.
  109. 1 2 3 4 5 Gary Kitmacher. Reference Guide to the International Space Station (англ.). — Canada: Apogee Books[англ.], 2006. — P. 71—80. — ISBN 978-1-894959-34-6.
  110. Mathews, Melissa; James Hartsfield.: International Space Station Status Report: SS05-015. NASA News. NASA (25 марта 2005). Дата обращения: 11 января 2010. Архивировано 22 января 2012 года.
  111. Спутник связи КА «Луч-15». Сайт центрального музея связи имени А. С. Попова. Дата обращения: 24 ноября 2010. Архивировано из оригинала 18 июня 2013 года.
  112. David Harland. The Story of Space Station Mir (неопр.). — New York: Springer-Verlag New York Inc, 2004. — ISBN 978-0-387-23011-5. Архивировано 29 июня 2011 года.
  113. Harvey, Brian. The rebirth of the Russian space program: 50 years after Sputnik, new frontiers (англ.). — Springer Praxis Books, 2007. — P. 263. — ISBN 0387713549.
  114. Anatoly Zak. Space exploration in 2011. RussianSpaceWeb (4 января 2010). Дата обращения: 12 января 2010. Архивировано 22 января 2012 года.
  115. Многофункциональная космическая система ретрансляции «Луч». ИСС имени академика М. Ф. Решетнёва. Дата обращения: 4 июня 2014. Архивировано 23 января 2012 года.
  116. Лётные испытания спутника «Луч-5А». Газета ИСС имени академика М. Ф. Решетнёва «Сибирский спутник». Дата обращения: 7 марта 2012. Архивировано из оригинала 9 марта 2012 года.
  117. ISS On-Orbit Status 05/02/10. NASA (2 мая 2010). Дата обращения: 7 июля 2010. Архивировано 22 января 2012 года.
  118. Владимиров А. Посадка «Союза ТМА-1». Новости космонавтики. Дата обращения: 7 ноября 2011. Архивировано 22 января 2012 года.
  119. 1 2 John E. Catchpole. The International Space Station: Building for the Future (англ.). — Springer-Praxis, 2008. — ISBN 978-0387781440.
  120. Memorandum of Understanding Between the National Aeronautics and Space Administration of the United States of America and the Government of Japan Concerning Cooperation on the Civil International Space Station. НАСА (24 февраля 1998). Дата обращения: 5 октября 2011. Архивировано 22 января 2012 года.
  121. Operations Local Area Network (OPS LAN) Interface Control Document (PDF). NASA (февраль 2000). Дата обращения: 30 ноября 2009. Архивировано 22 января 2012 года.
  122. ISS/ATV communication system flight on Soyuz. EADS Astrium (28 февраля 2005). Дата обращения: 30 ноября 2009. Архивировано 22 января 2012 года.
  123. Chris Bergin. STS-129 ready to support Dragon communication demo with ISS. NASASpaceflight.com (10 ноября 2009). Дата обращения: 30 ноября 2009. Архивировано 22 января 2012 года.
  124. Linux Foundation Training Prepares the International Space Station for Linux Migration (8 мая 2013). Дата обращения: 7 июля 2013. Архивировано 8 мая 2013 года.
  125. Keith Cowing. 2001: A Space Laptop. spaceref (18 сентября 2000). Дата обращения: 9 января 2014. Архивировано 22 января 2012 года.
  126. Экипаж российского сегмента МКС получит доступ в интернет только через несколько лет. Сайт Роскосмоса (20 сентября 2010). Дата обращения: 11 августа 2011. Архивировано из оригинала 20 августа 2011 года.
  127. NASA Extends the World Wide Web Out Into Space (англ.). НАСА (22 января 2010). Дата обращения: 29 ноября 2010. Архивировано 11 августа 2011 года.
  128. "First Tweet from Space". New York Times. 2010-01-22. Архивировано 10 июля 2011. Дата обращения: 7 ноября 2011.
  129. Living and Working on the International Space Station (англ.). CSA. Архивировано 19 апреля 2009 года.
  130. "Как устроены туалеты для космонавтов?". yugZONE.ru. Архивировано 17 мая 2012. Дата обращения: 4 февраля 2012.
  131. США планируют доставить на МКС свой туалет. РИА Новости (23 сентября 2020). Дата обращения: 29 сентября 2020. Архивировано 30 сентября 2020 года.
  132. Ed’s Musings from Space Архивная копия от 1 сентября 2012 на Wayback Machine. Expedition 7 astronaut Ed Lu, Updated: 09/08/2003 Accessed August 2007
  133. Mission Elapsed Time explained (13 сентября 1995). Дата обращения: 9 ноября 2007. Архивировано из оригинала 9 ноября 2004 года.
  134. Ask the STS-113 crew: Question 14 (7 декабря 2002). Дата обращения: 5 мая 2015. Архивировано 11 августа 2011 года.
  135. Жизнь на МКС: Космический салат. Дата обращения: 10 августа 2015. Архивировано 8 августа 2015 года.
  136. Popular science (англ.).
  137. Впервые выращенный салат в космосе попробовали на станции «Мир». Дата обращения: 13 августа 2015. Архивировано 13 августа 2015 года.
  138. Статистику посещений можно получить, проанализировав данные на сайте НАСА: Space Station Crew. Дата обращения: 13 апреля 2009. Архивировано 11 августа 2011 года. и Shuttle Missions. Дата обращения: 9 июня 2011. Архивировано 11 августа 2011 года.
  139. "МКС побила рекорд станции "Мир" по непрерывному нахождению космонавтов на ней". Сайт Роскосмоса. 2010-10-26. Архивировано 18 июня 2013. Дата обращения: 1 ноября 2010.
  140. Космонавты вернулись на Землю после самого долгого полета в истории МКС. lenta.ru (27 сентября 2023). Дата обращения: 27 сентября 2023. Архивировано 27 сентября 2023 года.
  141. Завершается самый долгий полет людей в истории МКС - Газета.Ru | Новости. Газета.Ru (27 сентября 2023). Дата обращения: 27 сентября 2023. Архивировано 26 сентября 2023 года.
  142. На Землю вернулись участники самой длительной миссии в истории МКС. Новости. Первый канал. Дата обращения: 27 сентября 2023. Архивировано 27 сентября 2023 года.
  143. РКК «Энергия» — Международная космическая станция. Дата обращения: 20 марта 2021. Архивировано 17 мая 2021 года.
  144. Cynthia A. Evans, Julie A. Robinson. Space Station Orbit Tutorial (англ.). NASA Johnson Space Center. Дата обращения: 1 марта 2020. Архивировано 1 марта 2020 года.
  145. 1 2 Mary Regina M. Martin, Robert A. Swanson, Ulhas P. Kamath, Francisco J. Hernandez and Victor Spencer. On-Orbit Propulsion System Performance of ISS Visiting Vehicles (англ.). American Institute of Aeronautics and Astronautics (1 января 2013). Дата обращения: 1 марта 2020. Архивировано 1 марта 2020 года.
  146. Амплитуда полёта МКС за последние 365 дней Архивная копия от 12 декабря 2008 на Wayback Machine // heavens-above.com (англ.)
  147. Rand Simberg. The ISS After the Shuttle: Analysis (англ.). Popular Mechanics (27 июля 2011). Дата обращения: 2 марта 2020. Архивировано 5 августа 2020 года.
  148. Carol Pinchefsky. 5 Horrifying Facts You Didn't Know About the Space Shuttle (англ.). Forbes (18 апреля 2012). Дата обращения: 1 марта 2020. Архивировано 24 мая 2019 года.
  149. 1 2 Amiko Kauderer. Higher Altitude Improves Station's Fuel Economy (англ.). NASA (14 февраля 2011). Дата обращения: 1 марта 2020. Архивировано 25 декабря 2021 года.
  150. Орбиту МКС подняли до 435 километров. Полит.ру (4 апреля 2013). Дата обращения: 5 марта 2022. Архивировано 5 марта 2022 года.
  151. «Прогресс» спас МКС от столкновения с космическим мусором Архивная копия от 17 октября 2022 на Wayback Machine // Госкорпорация «Роскосмос»
  152. STS-127 Mission Information (англ.). НАСА. Дата обращения: 14 марта 2016. Архивировано 22 января 2012 года.
  153. «Эксперимент „Плазменный кристалл“», РКК «Энергия». Дата обращения: 18 мая 2008. Архивировано 16 октября 2008 года.
  154. «Одною плазмой связаны», интервью с академиком РАН В. Е. Фортовым, Российская Газета, 2006 г. Дата обращения: 18 мая 2008. Архивировано 9 февраля 2009 года.
  155. «Эксперимент „Матрёшка-Р“», РКК «Энергия». Дата обращения: 18 мая 2008. Архивировано из оригинала 17 октября 2008 года.
  156. «Эксперимент „ROKVISS“», РКК «Энергия». Дата обращения: 18 мая 2008. Архивировано из оригинала 21 декабря 2007 года.
  157. «В канун католического Рождества на орбиту отправится немецкий робот-манипулятор». Космические новости Александра Железнякова. (недоступная ссылка)
  158. «Научные исследования на российском сегменте МКС», РКК «Энергия». Дата обращения: 4 июня 2008. Архивировано из оригинала 7 июня 2008 года.
  159. Российские космонавты впервые начнут выращивать сладкий перец на МКС. Дата обращения: 29 января 2016. Архивировано 29 января 2016 года.
  160. «Space Flight Induced Reactivation of Latent Epstein-Barr Virus (Epstein-Barr)», ISS Program Scientist’s Office, NASA nasa.gov Архивная копия от 5 апреля 2008 на Wayback Machine (англ.)
  161. Giuseppe Reibaldi et al. The ESA Payloads for Columbus - A bridge between the ISS and exploration. ЕКА (май 2005). Дата обращения: 27 января 2007. Архивировано 11 августа 2011 года.
  162. Steve Feltham & Giacinto Gianfiglio ESA’s ISS External Payloads. ЕКА (март 2002). Дата обращения: 7 февраля 2007. Архивировано 11 августа 2011 года.
  163. JAXA представило первую секцию экспериментального модуля "Кибо". Компьютерра. Дата обращения: 1 декабря 2006. Архивировано из оригинала 28 мая 2008 года.
  164. Японский астронавт сделал забавные открытия Архивная копия от 1 февраля 2012 на Wayback Machine Дни. Ру 28.04.2009
  165. Роскосмос: экспедиции на МКС теперь будут летать по «короткой схеме». РИА Новости (8 ноября 2013). Дата обращения: 8 ноября 2013. Архивировано 8 января 2014 года.
  166. "Jules Verne ATV launch rescheduled to 9 March" (англ.). ЕКА. 2008-03-02. Архивировано 22 мая 2008. Дата обращения: 2 марта 2008.
  167. Dragon (англ.). Сайт компании SpaceX. Дата обращения: 16 апреля 2012. Архивировано 11 августа 2011 года.
  168. Prospective Piloted Transport System, PPTS/ACTS. RussianSpaceWeb.com. Дата обращения: 28 сентября 2008. Архивировано 11 августа 2011 года.
  169. FlightGlobal.com — NASA warns Rocketplane Kistler on COTS cancellation. Дата обращения: 23 апреля 2008. Архивировано 30 марта 2008 года.
  170. Rocketplane Kistler Appeals NASA Decision to Terminate COTS Agreement (англ.). Space.com (22 октября 2007). Дата обращения: 23 октября 2007. Архивировано 11 августа 2011 года.
  171. Orbital Sciences Corporation press release — NASA Selects Orbital To Demonstrate New Commercial Cargo Delivery System For The International Space Station. Дата обращения: 23 апреля 2008. Архивировано 14 февраля 2009 года.
  172. Российский многоразовый космический корабль «Клипер». Дата обращения: 12 ноября 2009. Архивировано 9 августа 2011 года.
  173. Michael Hoffman. It’s getting crowded up there (недоступная ссылка) Defense News, 03.04.2009.
  174. F. L. Whipple. The Theory of Micrometeoroids Архивная копия от 17 октября 2015 на Wayback Machine Popular Astronomy 57: 517. 1949.
  175. Chris Bergin. Soyuz TMA-16 launches for journey to ISS—Safe Haven evaluations Архивная копия от 3 октября 2009 на Wayback Machine NASASpaceflight.com, 30.09.2009 (англ.)
  176. Изрядно поволноваться пришлось экипажу МКС Архивная копия от 15 мая 2012 на Wayback Machine www.1tv.ru, 29.06.2011
  177. Космический мусор миновал МКС. Lenta.ru (24 марта 2012). Дата обращения: 24 марта 2012. Архивировано 25 марта 2012 года.
  178. Eugenie Samuel. Space station radiation shields 'disappointing'. New Scientist (23 октября 2002). Дата обращения: 20 февраля 2022. Архивировано 11 мая 2015 года.
  179. Ker Than. Solar Flare Hits Earth and Mars. Space.com (23 февраля 2006). Дата обращения: 14 ноября 2017. Архивировано 14 октября 2014 года.
  180. A new kind of solar storm. NASA (10 июня 2005). Дата обращения: 14 ноября 2017. Архивировано 16 мая 2017 года.
  181. На поверхности МКС найден морской планктон. Петербургский дневник (20 августа 2014). Дата обращения: 20 февраля 2022. Архивировано 20 февраля 2022 года.
  182. Законодательная основа МКС. Европейское космическое агентство Архивная копия от 19 июня 2008 на Wayback Machine (англ.)
  183. «Договор о космосе 1967» — статья из Большой советской энциклопедии
  184. Сергей Лесков. В невесомости жёсткие законы. Известия (8 ноября 2007). Дата обращения: 18 августа 2018. Архивировано 18 августа 2018 года.
  185. Кодекс поведения экипажа Международной космической станции от 01 января 2001 - docs.cntd.ru. docs.cntd.ru. Дата обращения: 12 марта 2022. Архивировано 12 марта 2022 года.
  186. Evaluation of the Major Crown Project - The Canadian Space Station Program (MCP-CSSP). Дата обращения: 26 марта 2009. Архивировано из оригинала 11 августа 2011 года.
  187. «Космический тур». Последний рубеж. avia.ru Архивная копия от 1 мая 2008 на Wayback Machine (рус.)
  188. Первая космическая свадьба едва не стоила космонавту карьеры Архивная копия от 7 января 2012 на Wayback Machine, РИА Новости, 10.08.2008
  189. Конгресс США разрешил использовать корабли «Союз» для полётов на МКС. rian.ru/ Архивная копия от 28 мая 2006 на Wayback Machine (рус.)
  190. НАСА взяла. vremya.ru Архивная копия от 8 февраля 2009 на Wayback Machine (рус.)
  191. How Much Does It Cost? ЕКА. Дата обращения: 18 июля 2006. Архивировано 11 августа 2011 года.
  192. Бюджет НАСА. nasa.gov Архивная копия от 18 октября 2004 на Wayback Machine (англ.)
  193. МКС: Главные события финансового года. nasa.gov Архивная копия от 1 ноября 2004 на Wayback Machine (англ.)
  194. Пенс заявил, что США платят России около $85 млн за доставку каждого астронавта на МКС. Дата обращения: 4 ноября 2018. Архивировано 4 ноября 2018 года.
  195. published, Tariq Malik European Hopes Ride on New Space Lab, Cargo Ship. Space.com (5 декабря 2007). Дата обращения: 12 марта 2022. Архивировано 12 марта 2022 года.
  196. DLR - 20 Jahre ISS. DLRARTICLE DLR Portal. Дата обращения: 12 марта 2022. Архивировано 14 марта 2022 года.
  197. Etranger World: Major Changes for Japan’s space sector. Дата обращения: 14 мая 2008. Архивировано из оригинала 13 апреля 2008 года.
  198. Space News: Japan Seeking 13 Percent Budget Hike for Space Activities. Дата обращения: 6 декабря 2008. Архивировано 6 декабря 2008 года.
  199. Бюджет Роскосмоса в 2005-2010 годах. www.kommersant.ru (12 апреля 2008). Дата обращения: 12 марта 2022. Архивировано 12 марта 2022 года.
  200. International Space Station facts and figures. Дата обращения: 28 января 2007. Архивировано из оригинала 12 сентября 2004 года.
  201. Источник. Дата обращения: 23 августа 2022. Архивировано 6 мая 2022 года.
  202. Отчёт о экономической составляющей крупных проектов НАСА (1976 год) Архивная копия от 19 августа 2014 на Wayback Machine ntrs.nasa.gov (англ.)
  203. Рассказы о «дополнительных технологических доходах» НАСА Архивная копия от 15 мая 2008 на Wayback Machine Федерация американских учёных (англ.)
  204. Robert Park, «The Virtual Astronaut». The New Atlantis Архивная копия от 10 марта 2007 на Wayback Machine (англ.)
  205. Дополнительные доходы НАСА. Архивная копия от 4 апреля 2012 на Wayback Machine sti.nasa.gov (англ.)
  206. Роберт Парк, «Космическая станция разворачивает солнечные батареи» Архивная копия от 4 июля 2008 на Wayback Machine bobpark.physics.umd.edu (англ.)
  207. Исследования НАСА в 2007 году: «Почечные камни» Архивная копия от 16 сентября 2008 на Wayback Machine Сайт НАСА (англ.)
  208. Исследования НАСА в 2007 году: «Спячка» Архивная копия от 16 сентября 2008 на Wayback Machine Сайт НАСА (англ.)
  209. Исследования НАСА в 2007 году: «Аномалии ЦНС во время длительного пребывания в космосе» Архивная копия от 30 ноября 2007 на Wayback Machine Сайт НАСА (англ.)
  210. Джеф Фуст. «Проблемы на космической станции» (2005 год) Архивная копия от 11 мая 2008 на Wayback Machine The Space Review (англ.)
  211. Джеймс Секоски, Джордж Массер. «Вперёд и выше» (1996 год) Архивная копия от 8 августа 2011 на Wayback Machine Тихоокеанское Астрономическое Общество (англ.)
  212. 1 2 РКК «Энергия»: откат назад spacenews.ru (рус.)
  213. В. Лындин. «Начало конца» Архивная копия от 9 мая 2008 на Wayback Machine «Новости космонавтики» (рус.)
  214. 1 2 Телепередача Светланы Сорокиной «Основной инстинкт»: Зачем нам космос? (2003.06.10) tvoygolos.narod.ru Архивная копия от 24 декабря 2007 на Wayback Machine (рус.)
  215. «Что бы сказал Королёв?» (2002 год) Архивная копия от 26 октября 2004 на Wayback Machine pereplet.ru (рус.)
  216. «Судьба МКС пока не ясна» Архивная копия от 8 февраля 2009 на Wayback Machine Российская Академия Наук (рус.)
  217. «Россия и Америка в космосе: вместе или порознь?» Архивная копия от 2 апреля 2008 на Wayback Machine Известия науки (рус.)
  218. 1 2 Кисляков, Андрей С высокой орбиты – на контроль за микроспутниками. НВО (27 мая 2011). Дата обращения: 30 мая 2011. Архивировано 12 июня 2011 года.
  219. Учёный РАН заявил о ненужности пилотируемой космонавтики. Дата обращения: 13 апреля 2019. Архивировано 14 апреля 2019 года.
  220. Наблюдение за Международной космической станцией (МКС) | Мои увлекательные и опасные эксперименты. acdc.foxylab.com. Дата обращения: 30 октября 2023. Архивировано 30 октября 2023 года.
  221. Астроном дала россиянам советы по наблюдению за МКС. govoritmoskva.ru. Дата обращения: 30 октября 2023. Архивировано 30 октября 2023 года.
  222. Космическая станция пересекает активное Солнце (рус.). Астронет (10 апреля 2022). Дата обращения: 30 октября 2023. Архивировано 30 октября 2023 года.
  223. Пример траектории и времени пролёта МКС над Московской областью, 23 июля 2008 года. esa.heavens-above.com (недоступная ссылка)
Видео
Тяньгун (орбитальная станция)Тяньгун-2Тяньгун-1Международная космическая станцияМир (орбитальная станция)Салют-7Салют-6Салют-5Салют-4Салют-3СкайлэбСалют-1