Головоломка Слотобера — Граатсмы (Iklkfklkbtg VlkmkQyjg — Ijggmvbd)
Головоломка Слотобера — Граатсмы — это задача упаковки шести блоков 1 × 2 × 2 и трёх 1 × 1 × 1 блоков в 3 × 3 × 3 куб. Решение головоломки единственно (с точностью до зеркальных отражений и поворотов).
Головоломка, по существу, будет той же самой, если убрать блоки 1 × 1 × 1 и задачей будет упаковка шести 1 × 2 × 2 блоков в куб объёма 27. Головоломка Слотобера — Граатсмы рассматривается как самая маленькая (известная) нетривиальная 3D задача упаковки.
Решение
[править | править код]Решение головоломки Слотобера — Граатсмы просто, если сообразить, что три 1 × 1 × 1 блока (или три пустоты) следует расположить вдоль большой диагонали куба, так как на каждом уровне во всех направлениях должен находиться один такой блок. Это следует из соображений чётности, поскольку большие блоки могут заполнить чётное число девяти ячеек каждого 3 x 3 уровня[1].
Вариации
[править | править код]Головоломка Слотобера — Граатсмы является примером головоломки упаковки куба, в которой используются выпуклые поликубы. Известны другие головоломки упаковки выпуклых прямоугольных блоков. Наиболее известная из них — головоломка Конвея, в которой требуется упаковать восемнадцать прямоугольных блоков в куб 5 x 5 x 5. Более сложна задача упаковки 41 прямоугольного блока 1 x 2 x 4 в куб 7 x 7 x 7 (при этом остаются 15 пустых ячеек)[1].
См. также
[править | править код]Примечания
[править | править код]Ссылки
[править | править код]- Головоломка Слотобера — Граатсмы в книге Стьюарта Коффина (Stewart Coffin) «The Puzzling World of Polyhedral Dissections» (Головоломный Мир Разрезаний Многогранников)
- Слотобер и Граатсма: Собирание кубика Архивная копия от 16 марта 2020 на Wayback Machine
- [1] Слотобер и Граатсма: Датское математическое искусство]