Масса, заряд, импульс и энергия в уравнениях механики сплошной среды
[править | править код]
Основные уравнения механики сплошной среды – непрерывности, движения и энергии – демонстрируют причины изменения во времени плотностей трех основных механических величин: массы , импульса и энергии .
При этом:
- первое слагаемое левой части каждого из названных уравнений представляет собой изменение плотности (количества в единице объема) соответствующей величины в единицу времени;
- второе – результат обмена этой величиной выделенного единичного объема с соседними объемами;
- третье – изменение плотности соответствующей величины в единицу времени под действием внешних сил;
- правая часть – изменение плотности соответствующей величины в единицу времени в результате столкновений частиц в объеме.
При описании газа заряженных частиц одной из форм уравнения непрерывности является закон сохранения заряда в дифференциальной форме, в котором количество вещества представлено не массой , а зарядом .
Общими характеристиками массы, заряда, импульса и энергии являются:
Однако, по одному признаку импульс в этом списке стоит особняком. А именно: масса, заряд и энергия – скаляры. Соответственно плотности массы, заряда и энергии – скаляры, плотности потока массы, заряда и энергии – векторы.
Импульс же сам является вектором. Соответственно, плотность импульса есть вектор – полностью описывается тремя величинами. Плотность же потока импульса полностью описывается уже девятью величинами: любая из трех проекций импульса вместе с частицей может переноситься в любом из трех пространственных направлений. Таким образом, плотность потока импульса представляет собой тензор второго ранга (кинетический тензор):
, ,
где
- – количество -й проекции импульса, которое в единицу времени переносится через единицу поверхности в -м направлении.
- – функция распределения частиц по скоростям.
Можно заметить, что половина следа (суммы диагональных компонент) кинетического тензора равна плотности кинетической энергии:
В результате форма записи уравнения движения в традиционном представлении отличается от формы записи уравнений непрерывности:
и энергии:
.
А именно:
где:
- – плотность массы;
- – плотность потока массы, математически тождественная плотности импульса;
- – среднемассовая скорость;
- – плотность энергии;
- – плотность потока энергии;
- – внутренняя энергия частицы;
- – внешняя сила, действующая на единицу объема газа;
- – изменение в единицу времени в результате столкновений (здесь приведены уравнения для компоненты многокомпонентной среды).
Можно заметить три основных неудобства последней записи по сравнению с двумя предыдущими:
- громоздкость;
- необходимость записи в трех проекциях;
- привязанность конкретно к декартовым координатам.
Последнее, например, означает, что в зависимости от системы координат, в которых решается задача, запись уравнения движения в проекциях будет иметь разные формы.
Такими же недостатками обладает и запись кинетического тензора в развернутой форме:
и запись последнего слагаемого в приведенном выражении:
где
- – давление;
- – компонента тензора вязких напряжений
Наличие названных недостатков скорее всего можно объяснить тем, что кинетика в физике и тензорный анализ в математике – это сравнительно молодые направления в науке, возникшие уже после того, как натурфилософия, фактически, уже разделилась на отдельные отрасли: физику, химию, математику и т.п. В отличие от Эйлера, Гаусса, Стокса физики уже были только физиками, а математики – только математиками.
В результате тензорный анализ в математике, с одной стороны, оказался достаточно отстраненным от проблем современной физики и, с другой стороны, не сформировал еще общепринятой и достаточно компактной символики.
Развитие математического аппарата любой естественной науки часто ставит исследователя перед выбором:
1. Оставаться в кругу уже определенных категорий, правил и символики, за счет громоздкости, необщности и большого количества выражений.
2. Обобщить понятия, упростить и сократить количество выражений за счет введения новых категорий, правил и символики.
Первый выбор оправдан в случае, когда круг объектов с особенными свойствами узок и редко употребляется в соответствующем направлении науки. В противоположном случае, необходимость дополнительных интеллектуальных усилий в течение определенного времени очень скоро окупается экономией времени и средств представления (бумаги, мела, компьютерной памяти) в дальнейшем массированном обращении с соответствующими объектами.
Примером преимущества второго выбора в математике и физике является появление векторного анализа, возникшего ввиду трехмерности геометрического пространства.
Первый выбор – использование категорий исключительно скалярного анализа – требовал бы в данном случае использования трех определений в описании положения объекта – различных в различных системах координат (декартовой, цилиндрической или сферической), трех определений в описании изменения положения во времени. При этом использование исключительно скалярной символики означало бы разные правила дифференцирования характеристик положения по времени для получения соответствующих характеристик изменения положения. В каждой задаче вместо одного уравнения движения необходимо было бы записывать три, строго оговаривая при этом систему координат, в которой справедлива такая запись. Точно так же пришлось бы поступать в выражениях для связи потенциальной энергии и силы, характеристик электромагнитного поля и движения частиц и т.п.
Второй выбор – введение понятия вектора – означает необходимость усвоения немногих новых определений: вектор, скалярное произведение, векторное произведение и т.п., но легко окупается следующими выгодами:
- вектор сохраняет свою целостность в любой системе координат, в то время как значения проекций меняются;
- правила преобразования положения в скорость, скорости в ускорение как векторов, связь между скоростью и импульсом, характеристиками поля и силой как между векторами сохраняются в различных системах координат.
Наиболее существенную новизну сравнительно со скалярным анализом представляет здесь само понятие вектора – нужно просто привыкнуть к тому, что в геометрии и математике одна величина может характеризоваться не одним, а тремя числами – по числу пространственных измерений в нашей Вселенной. В операциях с кинетическим тензором мы сталкиваемся с названной выше необходимостью выбора – по-прежнему оперировать объектами двух типов (векторами и скалярами), описывая перенос импульса девятью скалярами или тремя векторами (со всеми издержками, названными выше) или ввести понятие и правила операций с новыми объектами, характеризующимися девятью числами. Массовость обращений к переносу импульса в механике сплошной среды скорее располагает ко второму выбору. Кроме того, есть соображения, по которым оптимальным здесь становится не просто определение нового класса объектов, но введение некоего "над-класса", к которому равно относятся и скаляры, и векторы и вновь вводимые объекты. Таким "над-классом" в математике и физике являются тензоры соответствующих рангов.
В нашем случае тензоры являются математическим представлением конкретных физических величин, но не операторами в матричном анализе. Предлагаемая символика и правила относятся именно к такому случаю и не обязательно полностью соответствуют символике матричного анализа.
Тензором определенного ранга в -мерном пространстве называют величину, которая полностью описывается числами – элементами тензора. Предметом механики сплошной среды является обычное трехмерное пространство (), поэтому в дальнейшем мы и будем говорить только о нем. Таким образом, в нашем случае тензором ранга является величина, которая полностью описывается элементами.
В таком случае:
- скаляр, имеющий один элемент, есть тензор нулевого ранга;
- вектор, имеющий три элемента, есть тензор первого ранга.
Появление нового класса объектов требует новой символики. А именно:
- единственный элемент, из которого состоит скаляр , не требует индекса в записи значения;
- каждый из трех элементов вектора обозначается индексом , изменяющимся от 1 до 3 – соответственно числу измерений геометрического пространства;
- каждый из элементов тензора -го ранга обозначается индексами , изменяющимися от 1 до 3 – в дальнейшем для краткости вместо будем писать .
В тензорном анализе, так же, как и в векторном, важным является понятие базиса, основанное на определении единичного тензора.
Единичным тензором -го ранга есть тензор , в котором равны нулю все элементы, кроме равного единице -го элемента.
В таком случае:
- : единичный тензор нулевого ранга есть единица (единичный скаляр);
- : единичный тензор первого ранга есть орта (единичный вектор).
Для облегчения восприятия правила операций с тензорами покажем сравнительно с правилами аналогичных операций с векторами.
Правило 1. Сложение тензоров и умножение тензора на скаляр
Вектор равен сумме векторов и , если элемент вектора равен сумме соответствующих элементов векторов и :
1.1. .
Прямым следствием правила сложения векторов является правило умножения вектора на скаляр: вектор равен произведению вектора и скаляра , если элемент вектора равен произведению соответствующего элемента вектора и скаляра :
1.2. .
Тензор -го ранга равен сумме тензоров такого же ранга и , если элемент тензора равен сумме соответствующих элементов тензоров и :
1.3. .
Прямым следствием правила сложения тензоров является правило умножения тензора на скаляр: тензор равен произведению тензора и скаляра , если элемент тензора равен произведению соответствующего элемента тензора и скаляра :
1.4. .
Правило 2. Запись тензоров как суммы элементов
Вектор может быть представлен как векторная сумма элементов с использованием орт:
1.5. .
При этом нет смысла говорить о результате произведения – единственный смысл записи состоит в указании, что величине равен именно -й элемент вектора .
Тензор -го ранга может быть представлен как тензорная сумма элементов с использованием единичных тензоров:
1.6. .
При этом нет смысла говорить о результате произведения – единственный смысл записи состоит в указании, что величине равен именно -й элемент тензора .
Правило 3. Инвариантность произведения скаляра и единичного тензора
"Результат" произведения скаляра и орты не зависит от последовательности сомножителей:
1.7. .
"Результат" произведения скаляра и единичного тензора не зависит от последовательности сомножителей:
1.8. .
Правило 4. Тензорное произведение и представление единичных тензоров через орты
Внимание !!! Правило 4 является, фактически, единственным новым правилом тензорного анализа, не представленным в векторном анализе.
Тензорным произведением тензора -го ранга и тензора -го ранга является тензор -го ранга , если -й элемент тензора равен произведению -го элемента тензора и -го элемента тензора :
1.9. .
Таким образом, тензорное скаляра и тензора произвольного ранга есть, фактически, "простое" произведение скаляра на тензор (1.4).
С учетом (9) единичный тензор -го ранга может быть представлен как кратное тензорное произведение орт:
1.10. .
Выражения (1.6) и (1.8) с использованием (1.10) можно записать так:
1.11, ,
1.12. .
В дальнейшем вместо (1.6) можно использовать запись (1.11) как более удобную в случаях, которые будут названы ниже.
Правило 5. Произведение тензоров
Существуют три вида произведений тензоров: тензорное, векторное и скалярное. Каждому из произведений соответствует знак: пробел в тензорном, крестик в векторном и точка в скалярном. Кроме того, удобно использование обобщенного знака произведения "", соответствующего трем различным случаям:
1.13. " ", " × ", " · ".
Правило 5 является прямым следствием (1.11) и (1.12) – скаляры в произведениях можно произвольно перемещать относительно знаков произведений – знак произведения тензоров фактически относится к ближайшим ортам:
1.14. ,
1.15.
.
Правило 6. Произведение орт
Тензорное, векторное и скалярное произведение орт имеют следующие значения:
1.16. ,
1.17. ,
,
,
,
1.18. ,
где – символ Кронекера:
1.19. .
Правило 7. Извлечение элемента из вектора и тензора
Произвольный вектор в различных выражениях может встречаться не в прямой записи (1.5), а как результат операций с другими векторами или скалярами. При необходимости "извлечения" конкретной проекции вектора из такой записи можно на основании (1.5) и (1.18) использовать операцию:
1.20.
Аналогично, на основании (11) и (18) можно записать для элемента тензора ранга выше нулевого:
1.21. .
Правило 8. Операторы Гамильтона и Лапласа
Любой из трех знаков (1.13) может использоваться не только в произведениях, но и в обозначениях действия оператора Гамильтона , имеющего, как известно, запись:
1.22. .
Результатом тензорного действия оператора является градиент, векторного – ротор, скалярного – дивергенция. К сожалению, в большинстве источников отсутствуют общие правила развернутой записи результатов действия оператора в произвольной (не декартовой) системе координат. Приводятся общие записи в декартовой системе – единственной системе координат с неизменными ортами, а также частные случаи записи для наиболее часто используемых ортогональных криволинейный координат – сферических, цилиндрических.
Правильные результаты в использовании оператора можно, однако, получить, распространив Правило 5 на скалярные дифференциальные операторы – скалярные дифференциальные операторы в произведениях можно произвольно перемещать относительно знаков произведений:
1.23. .
Таким образом, имеем:
1.24. ;
1.25. ;
1.26. .
Аналогично (1.24) – (1.26) правило (1.23) в применении к тензору дает:
- градиент тензора произвольного ранга:
1.27.
;
- ротор тензора ранга выше нулевого:
1.28.
;
- дивергенция тензора ранга выше нулевого:
1.29.
.
Обобщенно выражения (1.27) – (1.29) можно записать так:
1.30.
.
Правила дифференцирования производных орт в (1.27) – (1.30) аналогичны правилам дифференцирования произведений скаляров:
1.31.
При этом конкретная система координат представлена просто набором значений производных орт по проекциям координаты .
В тензорном анализе, как и в векторном, используется также оператор Лапласа :
1.32. .
Результат действия оператора на произвольный тензор в произвольной ортогональной системе координат можно получить с использованием тех же, что и выше, правил:
1.33. .
Тензор второго ранга может быть представлен как матрица:
1.34. .
Следом тензора второго ранга называют сумму его диагональных элементов:
1.35. .
Тензор называют сопряженным тензору , если элементы тензора получаются перестановкой индексов элементов тензора :
1.36. .
Можно заметить, что:
1.37. .
Тензор называют симметричным, если его элементы, симметричные относительно главной диагонали, равны друг другу:
1.38. .
Унитарный тензор есть тензор второго ранга, недиагональные элементы которого равны нулю, а диагональные – единице:
1.39. .
Можно показать следующие свойства унитарного тензора:
1.40. ,
1.41. ,
1.42. ,
1.43. ,
1.44. ,
где тензор, сопряженный градиенту вектора :
1.45.
и внутреннее произведение унитарного тензора и вектора :
1.46. .
Тензор произвольного ранга является симметричным, если перестановка любой пары индексов не изменяет значение компоненты тензора, например:
- для симметричных тензоров 2-го ранга:
1.47. ;
- для симметричных тензоров 3-го ранга:
1.48. ;
- для симметричных тензоров 4-го ранга:
1.49.
и так далее.
Можно заметить, что число независимых комбинаций индексов для тензора -го ранга равно .
Любой тензор произвольного ранга может быть преобразован в симметричный тензор с помощью операции симметрии:
1.50.,
где – сумма исходного тензора и всех тензоров, получаемых путем перестановки индексов его компонент аналогично (1.47) – (1.49).
Можно заметить, что если исходный тензор уже является симметричным, имеет место .
Тензорная степень вектора. Бином и дифференциал тензорной степени вектора
[править | править код]
Тензор произвольного ранга может быть результатом кратного тензорного произведения одного и того же вектора :
1.51. .
Для краткости можно использовать символ тензорной степени вектора (итерации вектора):
1.52. .
Показатель тензорной степени нужно записывать в скобках , чтобы не путать тензорный квадрат вектора:
1.53.
с принятым в векторном анализе обозначением квадрата вектора (квадрата модуля):
1.54. .
Можно убедиться, что:
1.55. .
В алгебре скаляров существует запись для степени суммы скаляров (бином Ньютона):
1.56. .
С использованием принятых здесь обозначений можно показать для тензорной степени суммы векторов:
1.57. .
Для дифференциала степени скаляра известно, что:
1.58. .
Можно показать, что для дифференциала тензорной степени вектора:
1.59. .
В операциях с тензорами часто встречается необходимость кратного скалярного произведения тензоров, для которого можно использовать следующую символику:
1.60. ,
то есть:
1.61.
и
1.62. .
Например, с использованием символа кратного скалярного произведения выражение (1.21) приобретает более компактную форму:
1.63.
Использование предложенной символики и правил позволяет записать уравнение движения в универсальной и компактной форме без привязки к конкретной системе координат:
1.64.
Аналогично, для развернутой формы записи кинетического тензора имеем:
1.65.
и для тензора вязких напряжений:
1.66. .
Следует отметить, что последнее выражение, так же как и выражение для кондуктивной составляющей плотности потока энергии (теплопроводность):
1.67.
представляют собой приближенные формы, применимые только при описании относительно плотных средств, когда производными величин и по времени и координатам можно пренебречь по сравнению с их изменением в единицу времени в единице объема в результате столкновений.
Одним из часто встречающихся недоразумений, связанных с "урезанностью" (1.66) и (1.67) является представление о том, что причинам вязкого переноса импульса и теплопроводности являются переменность среднемассовой скорости и температуры в пространстве. Аналогично, в диффузионном приближении, когда производными среднемассовой скорости по времени и координатам можно пренебречь по сравнению с ее изменением в единицу времени в единице объема в результате столкновений, причиной течения называют переменность давления в пространстве.
На самом деле, с учетом отброшенных в обоих названных случаях слагаемых течение, теплопроводность, вязкий перенос импульса, переменность скорости, температуры и давления являются следствиями общей в каждом из названных случаев причины. Например: изменение среднемассовой скорости и давления – как следствия переменности сечения канала в реактивных системах.
Основные уравнения газодинамики представляют собой уравнения моментов функции распределения частиц по скоростям. Функция
2.1. ,
где
- – элемент объема в пространстве координат;
- – элемент объема в пространстве скоростей;
- – количество частиц в элементе объема в пространстве координат и элементе объема в пространстве скоростей.
Инструментом для отыскания функции является кинетическое уравнение:
2.2. ,
где
- – сила, действующая на частицу сорта , имеющую скорость ;
- – оператор Гамильтона в пространстве скоростей;
- – интеграл столкновений – изменение в единицу времени в результате столкновений.
Основные механические характеристики частицы представляют собой моменты массы [1], где момент массы порядка определяется выражением:
2.3. .
Например:
- момент массы 0-го порядка представляет собой просто массу частицы;
- момент массы 1-го порядка представляет собой импульс частицы;
- момент массы 2-го порядка представляет собой тензор 2-го ранга, не имеющий специального названия, но половина следа которого есть кинетическая энергия частицы,
Основные газодинамические параметры представляют собой моменты функции распределения [1]:
2.4. ,
где
- – концентрация (количество частиц в единице объема);
- – символ осреднения по скоростям.
Например:
- момент 0-го порядка представляет собой плотность массы (массу единицы объема);
- момент 1-го порядка представляет собой плотность импульса (количество импульса в единице объема), количественно равную плотности потока массы (количеству массы, в единицу времени переносимое через единицу поверхности);
- момент 2-го порядка представляет собой плотность потока импульса (кинетический тензор, количество импульса, в единицу времени переносимое через единицу поверхности), половина следа которого есть плотность энергии (количество энергии в единице объема);
- момент 3-го порядка представляет собой тензор 3-го ранга, не имеющий специального названия, но половина вектор-следа которого равна плотности потока энергии (количеству энергии, в единицу времени переносимое через единицу поверхности).
Похожее описание приведено в работе R. Fitzpatrick Plasma Physics : An Introduction, но для моментов, отнесенных к единице массы, и с записью только для следа-вектора момента третьего порядка .
Уравнение момента -го порядка функции распределения частиц по скоростям может быть получено умножением всех слагаемых кинетического уравнения (2.2) на момент массы -го порядка с последующим интегрированием всех слагаемых по всем значениям скорости.
В результате в применении к заряженной компоненте газа возникает уравнение следующего общего вида:
2.5. ,
где – изменение момента в единицу времени в результате столкновений:
2.6. .
В зависимости от порядка можно записать следующие случаи для уравнения (2.5):
- при =0 – уравнение непрерывности:
2.7. ;
- при =1 – уравнение движения:
2.8. ;
- при =2 – уравнение потока импульса:
2.9. ;
- при =3 – уравнение моменте третьего порядка:
2.10. .
Незамкнутость системы уравнений моментов функции распределения. Уравнения статических моментов
[править | править код]
На основе анализа уравнений (2.5) – (2.10) можно заметить, что система уравнений моментов функции распределения является принципиально незамкнутой – при записи уравнения для очередного неизвестного момента -го порядка, во втором слагаемом левой части возникает дивергенция момента порядка .
В любом описании система уравнений газодинамики замыкается приближенно с использованием предположений того или иного уровня точности.
Оставляя пока открытым вопрос о незамкнутости системы уравнений моментов функции распределения, можно показать возможность ее иного представления с использованием записей статических моментов.
Сопутствующей системой координат называют инерциальную систему отсчета, в которой в данный момент в данной точке среднемассовая скорость компоненты равна нулю. Скорость частицы в сопутствующей системе (хаотическая скорость) может быть представлена так:
2.11. .
При этом в соответствии с определением среднемассовой скорости имеем:
2.12. .
Таким образом, первый момент (плотность потока частиц, плотность импульса) в сопутствующей системе равен нулю по определению.
Моменты функции распределения в сопутствующей системе называются статическими моментами и могут находиться подстановкой вместо в выражения для моментов функции распределения:
2.13. ,
2.14. ,
2.15. ,
где
- – тензор давления компоненты, равный кинетическому тензору в сопутствующей системе координат;
- – третий статический момент, равный третьему моменту в сопутствующей системе координат;
- – четвертый статический момент, равный четвертому моменту в сопутствующей системе координат.
Тензор можно условно называть потоком давления.
Можно показать следующие связи между величинами полных и статических моментов:
2.16. ,
2.17. ,
2.18. .
При этом вместо уравнений потока импульса (2.9) и третьего момента (2.10) можно использовать уравнение давления:
2.19.
и уравнение потока давления:
2.20. ,
где и – изменения и в единицу времени в результате столкновений, равные:
2.21.
2.22. .
Можно заметить, что половина следа тензора представляет собой кондуктивную составляющую плотности потока энергии:
2.23. .
Следует также отметить, что понятие тензора вязких напряжений является реликтом, связанным с попыткой представления единичного объема газа как материального тела, изменение импульса которого происходит в результате действия неких сил.
На самом деле все три слагаемые в (1.65) соответствуют переносу импульса вместе с частицами, а не результата обмена импульсами (действия сил). Поэтому предпочтительным является представление кинетического тензора в виде (2.16) или в виде:
2.24. ,
где – тензор вязкости, равный:
2.25. .
Поток вектора в математике и физике принято считать положительным, если он направлен наружу из выделенного объема, а силу в физике - положительной, если она направлена внутрь. Этим и объясняется разница в знаках между тензором вязкости (как составляющей плотности потока импульса вместе с молекулами и тензором вязких напряжений как "силой", действующей на объем.
Уравнение вида (2.19) приведено, например в книге Б. Росси и С. Ольберта "Introduction to the physics of space" [2], но в форме уравнения для компоненты тензора давления, а не в нашем компактном виде и без каких-либо рекомендаций о способах отыскания тензора .
Как уже сказано, система уравнений моментов функции распределения принципиально незамкнута. Замыкание достигается приближенно в зависимости от степени анизотропии функции распределения в сопутствующей системе координат, которую считают необходимым учесть в конкретной решаемой задаче.
Уравнения (2.7), (2.8), (2.19) - (2.22) содержат тензоры от 0-го до 3-го ранга, необходимые для расчета характеристик устройства с учетом, в том числе и диссипативного переноса импульса и энергии. Проблему представляет тензор 4-го ранга . При этом, моменты четных рангов не равны нулю даже при изотропном по распределении.
Например, при максвелловском распределении имеет место равенство:
2.26. .
В работе [1] предложено следующее приближенное обобщение зависимости (2.26):
2.27. .
В таком представлении уравнение (2.20) приобретает вид
2.28. ,
то есть не содержит уже новых неизвестных, что позволяет приближенно замкнуть систему на уровне моментов от 0-го до 3-го ранга.
Найдя след каждого слагаемого в (2.19) можно показать для скаляра давления :
2.29. .
С учетом (2.19), (2.29) для тензора вязкости можно записать:
2.30. .
Найдя след каждого слагаемого в (2.28) с учетом (2.23) и подставляя (как при максвелловском распределении) можно показать для теплопроводности:
2.31. .
Для однородного газа правые части (2.30) и (2.31) могут быть представлены так[3]:
2.32. ,
2.33. ,
где – эффективное время передачи давления[3].
Подстановка (2.32), (2.33) в (2.30) и (2.31) дает для однородного газа:
2.34. ,
2.35. .
Можно заметить, что "классические" выражения для вязкости и теплопроводности можно получить из (2.34) и (2.35), оставляя в левых частях только последние слагаемые. Однако в разреженных газах, где роль столкновений в объеме мала, нельзя пренебрегать слагаемыми, связанными с изменением диссипативных характеристик в пространстве и во времени. В отличие от "классических" полные записи являются дифференциальными по искомым параметрам, а значит для их решения необходимы граничные условия.
Названные условия должны отражать факторы изотропии или анизотропии в процессах на границе газа (или плазмы).
Например, на границе плазмы с поверхностью или окружающей нейтральной средой существует пространственный слой заряда (ленгмюовский слой), по своей природе неоднородный и нестационарный. Отражение электронов от потенциального барьера в этом слое не является зеркальным - происходит релаксация импульса и трансформация моментов функции распределения высоких рангов.
Вопрос формулировки граничных условий с учетом названного процесса решался в работах[4][5][6].
Актуальным остается вопрос о записи правых частей для уравнений моментов порядка выше 1 с учетом упругих и неупругих столкновений в объеме.
- ↑ 1 2 3 С. Ю. Нестеренко, Ш. Рошанпур. Система уравнений моментов функции распределения частиц по скоростям в разреженной среде индукционных источников плазмы, электронов и ионов // Авиационно-космическая техника и технология. — 2013. — № 7 (104). — С. 117-120. — ISSN 1727-7337. Архивировано 28 августа 2016 года.
- ↑ Б. Росси, С. Ольберт. Введение в физику космического пространства // Москва, Атомиздат. — 1974. — ISSN 5-9648-0006-8.
- ↑ 1 2 Е.М. Лифшиц, Л.П. Питаевский. Физическая кинетика. Теоретическая физика. Т. 10. // Москва: Наука. Архивировано 28 августа 2016 года.
- ↑ S h . R o s h a n p u r. Electron gas parameters change inside Langmuir layer in electric propulsion devices // Восточно-Европейский журнал передовых технологий. — 2013. — № 4/5 ( 64 ). — С. 36-39. — ISSN 1729-3774. Архивировано 16 сентября 2016 года.
- ↑ Le Quang Quyen, Ngo Dai Phong, S. Yu. Nesterenko, S. Roshanpour. Effect of electrons non-mirror reflection from potential shield on plasma borders inside helicon and Hall effect thrusters // IEPC-2013-411. Архивировано 28 августа 2016 года.
- ↑ А.В. Лоян, С.Ю. Нестеренко, Ш. Рошанпур, А.И.Цаглов. Математическое моделирование процессов в индукционных высокочастотных источниках плазмы и электронов // Авиационно-космическая техника и технология. — 2011. — № 10(87). — С. 203-206. — ISSN 1727-7337. Архивировано 17 сентября 2016 года.