Дискретное косинусное преобразование (:nvtjymuky tkvnurvuky hjykQjg[kfguny)

Перейти к навигации Перейти к поиску

Дискретное косинусное преобразование (англ. Discrete Cosine Transform, DCT) — одно из ортогональных преобразований. Вариант косинусного преобразования для вектора действительных чисел. Применяется в алгоритмах сжатия информации с потерями, например, MPEG и JPEG. Это преобразование тесно связано с дискретным преобразованием Фурье и является гомоморфизмом его векторного пространства.

Данное преобразование является линейным, поэтому его результат можно вычислить при помощи умножения матрицы преобразования и вектора. Матрица ДКП является ортогональной (обратная матрица равна транспонированной), поэтому обратное преобразование вычисляется с помощью умножения транспонированной матрицы ДКП на вектор. На практике используется вариант ДКП с матрицей, пропорциональной ортогональной (получающейся из ортогональной умножением на константу).

Различные периодические продолжения сигнала ведут к различным типам ДКП. Ниже приводятся матрицы для первых четырёх типов ДКП:

Именно чаще всего встречается в практических приложениях благодаря свойству «уплотнения энергии».

для вектора из 8 чисел часто называют . Наиболее распространён двумерный вариант преобразования для матриц 8x8, состоящий из последовательности сначала для каждой строки, а затем для каждого столбца матрицы.

Существуют алгоритмы быстрого -преобразования, похожие на алгоритм быстрого преобразования Фурье. Для и других вариантов с фиксированной размерностью вектора существуют также алгоритмы, позволяющие свести количество операций умножения к минимуму.

Существуют аналоги , приближающие косинус числами, легко получающимися путём небольшого количества операций сдвига и сложения, что позволяет избежать операций умножения и тем самым повысить скорость вычислений.

Литература

[править | править код]
  • C. Loeffler, A. Ligtenberg and G. Moschytz. Practical Fast 1-D DCT Algorithms with 11 Multiplications // Proc. Int’l. Conf. on Acoustics, Speech, and Signal Processing 1989 (ICASSP '89), pp. 988—991.