Уравнение состояния Ми — Грюнайзена (Rjgfuyuny vkvmkxunx Bn — IjZugw[yug)

Перейти к навигации Перейти к поиску

Уравнение состояния Ми — Грюнайзена — это уравнение, описывающее связь между давлением и удельным объёмом в среде при заданной температуре. Это уравнение в том числе используется для определения давления в процессе ударного сжатия твёрдого тела. Названо в честь немецкого физика Эдуарда Грюнайзена. Уравнение состояния Ми — Грюнайзена представляется в следующей[1] форме:

где и  — давление и внутренняя энергия в известном начальном состоянии,  — объём,  — полное давление,  — внутренняя энергия, и  — безразмерный коэффициент Грюнайзена, который определяет тепловое давление в правой части из тепловой энергии колеблющихся атомов, а  — давление на известной кривой в плоскости , например изотерм при комнатной температуре или абсолютном нуле (холодное давление).

Функция Грюнайзена[2] — мера изменения давления при изменении энергии системы при постоянном объёме. Она определяется по соотношению:

Производная берётся при постоянном объёме.

Уравнение Ми — Грюнайзена предполагает линейную зависимость давления от внутренней энергии. Для определения функции Грюнайзена используются методы статистической физики и предположение о линейности межатомных взаимодействий.

Оно используется для решения определённых термо-механических задач: определении эффектов ударной волны, термическом расширении твёрдых тел, быстром нагревании материалов из-за поглощения ядерного излучения[3].

Для вывода уравнения Ми — Грюнайзена используется уравнение Ранкина-Гюгонио для сохранения массы, момента и энергии:

где ρ0 — относительная плотность, ρ — плотность после ударного сжатия, pH — давление Гюгонио, EH — удельная внутренняя энергия (на единицу массы) Гюгонио, Us — скорость удара, и Up — скорость частиц.

Параметры для различных материалов

[править | править код]

Типичные различные для разных материалов величины для моделей в форме Ми — Грюнайзена.[4]

Материал (kg/m3) (m/s) (K)
Медь 8924 3910 1.51 1.96 1 0 0
Вода 1000 1483 2.0 2.0 10−4 0 0

Параметр Грюнайзена для идеальных кристаллов с парными взаимодействиями

[править | править код]

Выражение для параметра Грюнайзена для идеальных кристаллов с парными взаимодействиями в пространстве размерности имеет вид[1]:

где  — потенциал межатомного взаимодействия,  — равновесное расстояние,  — размерность пространства. Связь параметра Грюнайзена с параметрами потенциалов Леннард-Джонса, Ми и Морзе представлена в таблице.

Решетка Размерность Потенциал Леннард-Джонса Потенциал Ми Потенциал Морзе
Цепочка
Треугольная решётка
ГЦК, ОЦК
«Гиперрешётка»
Общая формула

Выражение для параметра Грюнайзена одномерной цепочки с взаимодействиями посредством потенциала Ми, приведенное в таблице, в точности совпадает с результатом статьи[5].

Литература

[править | править код]
  1. 1 2 Кривцов А. М., Кузькин В. А. Получение уравнений состояния идеальных кристаллов простой структуры // Известия РАН. Механика твёрдого тела. — 2011. — № 3. — С. 67—72.
  2. Vocadlo L., Poirer J.P., Price G.D. Grüneisen parameters and isothermal equations of state. American Mineralogist. — 2000. V. 85. — P. 390—395.
  3. Harris P., Avrami L. Some Physics of the Gruneisen Parameter. Technical report. — 1972.
  4. Shyue K.-M., A Fluid-Mixture Type Algorithm for Compressible Multicomponent Flow with Mie-Gruneisen Equation of State // Journal of Computational Physics. — 2001. Vol. 52. 3363 p.
  5. MacDonald, D. K. C.; Roy, S.K. (1955), "Vibrational Anharmonicity and Lattice Thermal Properties. II", Phys. Rev., 97: 673—676, doi:10.1103/PhysRev.97.673