Теорема о циркуляции магнитного поля (Mykjybg k enjtrlxenn bgiunmukik hklx)

Перейти к навигации Перейти к поиску

Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером[источник не указан 1327 дней] в 1826 году[источник не указан 1327 дней]. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил её (см. ниже). Уравнение, представляющее собой содержание теоремы в этом обобщённом виде, входит в число уравнений Максвелла. (Для случая постоянных электрических полей — то есть в магнитостатике — верна теорема в первоначальном виде, сформулированная Ампером и приведённая в статье первой; для общего случая правая часть должна быть дополнена членом с производной напряжённости электрического поля по времени — см. ниже.) Теорема гласит[1]:

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

Эта теорема, особенно в иностранной или переводной литературе, называется также теоремой Ампера или законом Ампера о циркуляции (англ. Ampère’s circuital law). Последнее название подразумевает рассмотрение закона Ампера в качестве более фундаментального утверждения, чем закон Био — Савара — Лапласа, который в свою очередь рассматривается уже в качестве следствия (что, в целом, соответствует современному варианту построения электродинамики).

Для общего случая (классической) электродинамики формула должна быть дополнена в правой части членом, содержащим производную по времени от электрического поля (см. уравнения Максвелла, а также параграф «Обобщение» ниже). В таком дополненном виде она представляет собой четвёртое уравнение Максвелла в интегральной форме.

Математическая формулировка

[править | править код]

В математической формулировке для магнитостатики теорема имеет[2] следующий вид[1][3]:

.

Здесь  — вектор магнитной индукции,  — плотность тока, скорость света в вакууме; интегрирование слева производится по произвольному замкнутому контуру, справа — по произвольной поверхности, натянутой на этот контур. Данная форма носит название интегральной, поскольку в явном виде содержит интегрирование. Теорема может быть также представлена в дифференциальной форме[4]:

.

Эквивалентность интегральной и дифференциальной форм следует из теоремы Стокса[5].

Приведённая выше форма справедлива для вакуума. В случае применения её в среде (веществе), она будет корректна только в случае, если под понимать вообще все токи, то есть учитывать и «микроскопические» токи, текущие в веществе, включая «микроскопические» токи, текущие в областях размерами порядка размера молекулы (см. диамагнетики) и магнитные моменты микрочастиц (см., например, статью «Ферромагнетики»).

Поэтому в веществе, если не пренебрегать его магнитными свойствами, часто удобно из полного тока выделить ток намагничения (см. связанные токи), выразив его через величину намагниченности и введя вектор напряжённости магнитного поля

.

Тогда теорема о циркуляции запишется в форме[6]

где под (в отличие от в формуле выше) имеются в виду только так называемые свободные токи, в которых ток намагничения исключён (что бывает удобно практически, поскольку  — это обычно уже в сущности макроскопические токи, которые не связаны с намагничением вещества и которые в принципе нетрудно непосредственно измерить)[7].

В динамическом случае — то есть в общем случае классической электродинамики — когда поля меняются во времени (а в средах при этом меняется и их поляризация) — и речь тогда идёт об обобщённой теореме, включающей , — всё сказанное выше относится и к микроскопическим токам, связанным с изменениями поляризации диэлектрика. Эта часть токов тогда учитывается в члене .

Основным фундаментальным обобщением[8] теоремы является четвёртое уравнение Максвелла. В интегральной форме оно является прямым обобщением на динамический случай магнитостатической формулы, приведённой выше. Для вакуума[9]:

для среды[10]:

.

(Как видим, формулы отличаются от приведённых выше только одним добавочным членом со скоростью изменения электрического поля в правой части).

Дифференциальная форма этого уравнения:

(в гауссовой системе, для вакуума и среды соответственно) — также можно при желании считать вариантом обобщения теоремы о циркуляции магнитного поля, поскольку она, конечно, тесно связана с интегральной.

Практическое значение

[править | править код]
Магнитное поле прямолинейного проводника с током.

Теорема о циркуляции играет в магнитостатике приблизительно ту же роль, что и теорема Гаусса в электростатике. В частности, при наличии определённой симметрии задачи, она позволяет просто находить величину магнитного поля во всём пространстве по заданным токам[1]. Например, для вычисления магнитного поля от бесконечного прямолинейного проводника с током по закону Био — Савара — Лапласа потребуется вычислить неочевидный интеграл, в то время как теорема о циркуляции (с учётом осевой симметрии задачи) позволяет дать мгновенный ответ:

.

Доказательство теоремы о циркуляции

[править | править код]
Циркуляция магнитного поля

Если теорема о циркуляции магнитного поля не принимается в качестве аксиомы, то она может быть доказана с помощью закона Био — Савара — Лапласа. Рассмотрим магнитное поле, создаваемое в точке бесконечным проводом с током, заданным в пространстве кривой . По закону Био — Савара — Лапласа токовый элемент провода, заданный радиус-вектором , создаёт в точке элементарное поле

.

Как и во всех формулах выше, здесь используется гауссова система; для СИ заменяется на (магнитная постоянная).

Полная индукция магнитного поля в точке получается интегрированием элементарного поля по всей кривой в направлении течения тока:

.

Полученный интеграл не относится ни к одному из двух родов криволинейных интегралов. Он определяет собой векторную величину, тогда как любой криволинейный интеграл является скалярной величиной. Но допустим, что его всё-таки можно вычислить каким-нибудь способом (например, интегрированием отдельно каждой компоненты вектора). Тогда найдём циркуляцию полученного вектора индукции по некоторому замкнутому контуру , обхватывающему провод с током.

По определению циркуляция векторной функции — это криволинейный интеграл второго рода от этой функции по замкнутому контуру в положительном направлении обхода этой кривой. Будем считать положительным направлением нормали к поверхности, натянутой на контур, такое направление, которое образует острый угол с осью . Тогда положительное направление обхода контура определяется правилом буравчика (правого винта) по отношению к положительной нормали. Будем также считать положительным тот ток, который течёт в направлении положительной нормали контура, охватывающего ток.

Циркуляция будет иметь вид

.

Под интегралами появилось смешанное произведение векторов , которое по свойству кососимметрии может быть записано следующим образом:

.

Тогда

.

Величина векторного произведения равна площади параллелограмма, построенного на этих векторах, а направление перпендикулярно параллелограмму. Данное векторное произведение можно считать элементарной векторной площадкой поверхности, которую заметает вектор при двойном криволинейном интегрировании, причём угол между и является острым. Эта поверхность является цилиндрической поверхностью, охватывающей провод с током, а её сечением является контур циркуляции . Тогда двойной криволинейный интеграл можно заменить поверхностным интегралом второго рода по данной поверхности, а циркуляция примет вид

.

Если считать поверхность интегрирования стягивающей, легко видеть, что поверхностный интеграл представляет собой телесный угол для данной поверхности. Поверхность интегрирования условно можно считать замкнутой на бесконечности. И тогда, поскольку вектор при интегрировании всегда находится внутри поверхности, телесный угол является полным, то есть равным стерадиан. И тогда циркуляция равна

.

Если бы контур не охватывал провод, то вектор при интегрировании никогда не находился бы полностью внутри поверхности интегрирования. В этом случае телесный угол был бы равен нулю, как и циркуляция поля: .

Последние два утверждения о телесном угле являются по сути содержанием теоремы Гаусса о потоке вектора напряжённости заряда через произвольную замкнутую поверхность и могут быть доказаны независимо.

Если бы ток тёк в противоположном направлении, угол между векторами и был бы уже тупым (нормаль была бы направлена внутрь поверхности), и циркуляция поменяла бы свой знак на противоположный, что эквивалентно течению тока в прежнем направлении, но с отрицательной силой.

В случае поля, создаваемого несколькими проводниками с током, нужно помнить о свойстве суперпозиции магнитного поля и свойстве аддитивности криволинейного интеграла: циркуляция суперпозиции векторов равна скалярной сумме циркуляций этих векторов.

Примечания

[править | править код]
  1. 1 2 3 Сивухин Д. В. Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 235. — 688 с.
  2. Приведено здесь в гауссовой системе единиц; в системе СИ константа в правой части вместо записывается как .
  3. здесь и ниже использована система СГС, в системе СИ коэффициенты отсутствуют
  4. Сивухин Д. В. Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 239. — 688 с.
  5. Сивухин Д. В. Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 241. — 688 с.
  6. Сивухин Д. В. Общий курс физики. — М.: Наука, 1977. — Т. III. Электричество. — С. 253. — 688 с.
  7. На практике при написании уравнений для среды индекс f у токов как правило опускается, пишется просто . Также часто не делается оговорок о том, что это именно «свободные» токи. В такой феноменологической теории никаких других токов явно не рассматривается, хотя на самом деле (физически) связанные токи, конечно, есть, просто «спрятаны» в другие величины — и т.п. и формально исключены из рассмотрения.
  8. Поскольку это обобщение основывается на верности магнитостатического варианта теоремы Ампера о циркуляции магнитного поля и сохранении заряда (которое может быть принято как постулат) и может быть показано достаточно строго соответствие обобщённого уравнения этим двум посылкам, а при наложении определённых дополнительных условий — и единственность такого обобщения, оно в принципе может быть также сформулировано в виде теоремы.
  9. В гауссовой системе единиц.
  10. В основном тексте — в гауссовой системе единиц. В СИ — так: