Проективная группа (Hjkytmnfugx ijrhhg)
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Определение
[править | править код]Пусть — векторное пространство над полем (или, более обще, над телом ), а — его полная линейная группа, то есть группа всех обратимых линейных преобразований. Эта группа коммутирует с гомотетиями пространства (умножениями на ненулевые константы поля ), а потому её элементы индуцируют преобразования проективного пространства (факторпространство по действию группы ).
Некоторые из этих индуцированных преобразований действуют на тривиально — это в точности элементы группы гомотетий пространства . Проективная группа — это факторгруппа по ядру действия:
- .
Если в пространстве явным образом выбрать координаты, то есть изоморфизм для натурального , получится
- ,
то есть проективная группа является факторгруппой группы невырожденных матриц по подгруппе ненулевых скалярных матриц.
Обобщения
[править | править код]Если вместо полной линейной группы взять специальную линейную группу , то есть ограничиться линейными преобразованиями с определителем 1, то получится проективная специальная линейная группа , также называемая унимодулярной проективной группой.
Свойства
[править | править код]- Если — конечное поле из элементов, то порядок группы равен [1].
- При группа проста, за исключением случаев и [1].
Примечания
[править | править код]- ↑ 1 2 Vinberg, E.B. (2001), "Projective group", in Hazewinkel, Michiel (ed.), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4