Джеймс Уэбб (телескоп) (:'ywbv RzQQ (mylyvtkh))

Перейти к навигации Перейти к поиску
Космический телескоп «Джеймс Уэбб»
англ. James Webb Space Telescope
Главное зеркало телескопа Джеймса Уэбба собранное в Центре космических полётов им. Годдарда (28 октября 2016 г.)
Главное зеркало телескопа Джеймса Уэбба собранное в Центре космических полётов им. Годдарда (28 октября 2016 г.)
Организация Соединённые Штаты Америки NASA
Европа ESA
Канада CSA
Главные подрядчики Соединённые Штаты Америки Northrop Grumman
Соединённые Штаты Америки Ball Aerospace
Волновой диапазон 0,6—28 мкм (части видимого и инфракрасного)
COSPAR ID 2021-130A
NSSDCA ID 2021-130A
SCN 50463
Местонахождение точка Лагранжа L2 системы Солнце — Земля (1,5 млн км от Земли в противоположную Солнцу сторону)
Тип орбиты гало-орбита
Дата запуска 25 декабря 2021; 26 дней назад (2021-12-25)
Место запуска ELA-3[2]
Средство вывода на орбиту Ариан-5 ECA[3]
Продолжительность 10—20 лет
Масса 6161,42 кг[4]
Тип телескопа телескоп-рефлектор системы Корша[1]
Диаметр 6,5 м[5][6] и 0,74 м[7]
Площадь собирающей
поверхности
около 25 м²
Фокусное расстояние 131,4 м
Научные инструменты
  • MIRI
прибор среднего инфракрасного диапазона
  • NIRCam
камера ближнего инфракрасного диапазона
  • NIRSpec
спектрограф ближнего инфракрасного диапазона
  • FGS/NIRISS
датчик точного наведения с устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом
Логотип миссии
Изображение логотипа
Сайт jwst.nasa.gov​ (англ.)
Логотип Викисклада Медиафайлы на Викискладе
3D-модель космического телескопа Джеймса Уэбба с полностью развёрнутыми компонентами
Схема пяти точек Лагранжа в системе Солнце — Земля.
JWST будет размещён в точке L2
3D-моделирование поэтапного развёртывания телескопа Джеймса Уэбба
Телескоп Джеймса Уэбба возможно сможет увидеть «первый свет» Вселенной после «тёмных веков»

Космический телескоп «Джеймс Уэбб» (англ. James Webb Space Telescope, JWST) — орбитальная инфракрасная обсерватория. Самый крупный и с самым большим зеркалом (сегментированное зеркало общим диаметром 6,5 метра, но монолитное зеркало самое большое всё ещё у Гершеля — 3,5 метра) космический телескоп, из когда-либо запущенных человечеством[8][9][10][11][12][13][14].

Первоначально назывался «Космический телескоп нового поколения» (англ. Next-generation space telescope, NGST). В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1906—1992), возглавлявшего агентство в 1961—1968 годах, во время реализации программы «Аполлон».

Было решено сделать первичное зеркало[en] телескопа не цельным, а из складываемых сегментов, которые будут раскрыты на орбите, так как диаметр первичного зеркала не позволил бы его разместить в ракете-носителе «Ариан-5». Первичное зеркало телескопа «Джеймс Уэбб» является сегментированным и состоит из 18 шестиугольных сегментов, изготовленных из позолоченного бериллия, размер каждого из сегментов составляет 1,32 метра от ребра до ребра, которые вместе объединяются в одно зеркало общим диаметром 6,5 метра[15]. Это даёт телескопу площадь сбора света примерно в 5,6 раза больше, чем у зеркала телескопа Хаббл диаметром в 2,4 метра, с площадью собирающей поверхности 25,37 м² против 4,525 м² у Хаббла. В отличие от Хаббла, который ведёт наблюдения в ближнем ультрафиолетовом, видимом и ближнем инфракрасном (0,1—1,0 мкм) спектрах, телескоп «Джеймс Уэбб» будет вести наблюдения в более низком диапазоне частот, от длинноволнового видимого света (красный) до среднего инфракрасного (0,6—28,3 мкм). Это позволит ему наблюдать наиболее далёкие объекты во Вселенной, объекты с большим красным смещением (первые галактики и звёзды во Вселенной), которые слишком старые, слабые и далёкие для телескопа Хаббл[16][17]. Телескоп защищён 5-слойным тепловым экраном, позволяющим поддерживать температуру зеркала и приборов ниже 50 K (−223 °C), чтобы телескоп мог работать в инфракрасном диапазоне излучения и наблюдать слабые сигналы в инфракрасном диапазоне без помех от любых других источников тепла. Поэтому телескоп будет размещён на гало-орбите в точке Лагранжа L2 системы Солнце — Земля, в 1,5 млн км от Земли, где его 5-слойный тепловой экран, в форме воздушного змея и размером с теннисный корт, будет защищать от нагревания Солнцем, Землёй и Луной одновременно[18][19]. Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь — в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле.

Проект представляет собой результат международного сотрудничества 17 стран, во главе которых стоит НАСА, со значительным вкладом Европейского и Канадского космических агентств.

Ориентировочная стоимость проекта составляет 10 миллиардов долларов (она будет расти по мере эксплуатации телескопа) из которых вклад НАСА оценивается в 8,8 миллиарда долларов, вклад Европейского космического агентства — 850 миллионов долларов, включая запуск, вклад Канадского космического агентства — 165 миллионов долларов[20][прим. 1].

25 декабря 2021 года телескоп был успешно запущен с космодрома Куру при помощи ракеты «Ариан-5»[21]. Первые научные исследования начнутся летом 2022 года. Время службы телескопа в основном ограничено запасом топлива для маневрирования около точки L2. Первоначальный расчёт был 5—10 лет. Однако при запуске удалось совершить крайне удачный манёвр и текущий запас топлива ограничен 20 годами, но не все приборы могут проработать столько времени[22]

По состоянию на 9 января 2022 года телескоп успешно развернул все свои системы и перешёл в полностью операционное состояние, продолжая следовать в точку назначения, куда он должен прибыть к концу месяца[23]. Охлаждение до рабочей температуры займёт несколько недель, а затем пройдут окончательные процедуры калибровки в течение примерно 5 месяцев, возможно, включая получения первого света Вселенной после «темных веков», перед началом запланированной исследовательской программы[24][25][26].

Задачи[править | править код]

15 июня 2017 года НАСА и ЕКА опубликовали список первых целей в работе телескопа, включающие свыше 2100 наблюдений. Ими стали планеты и малые тела Солнечной системы, экзопланеты и протопланетные диски, галактики и скопления галактик, а также квазары[27][28].

30 марта 2021 года НАСА объявило финальный список первичных целей для наблюдений, которые стартуют через 6 месяцев после запуска телескопа. В общей сложности было отобрано 286 из более чем одной тысячи заявок по семи основным направлениям астрономии, которые в сумме займут около шести тысяч часов наблюдательного времени телескопа, что составляет около двух третей всего времени, выделенного в рамках первого цикла наблюдений[29][30]. NASA получит 80 % времени телескопа, тогда как EKA — 15 %[31], CSA — 5 %[32].

Астрофизика[править | править код]

Первичными задачами JWST являются: обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Джеймс Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало[33]. «Джеймсу Уэббу» предстоит выяснить, как выглядели галактики во временном периоде начиная с 400 тыс. лет после Большого взрыва до 400 млн лет после Большого взрыва, недоступном для обычных телескопов не по причине недостаточной разрешающей способности, а в силу Красного смещения, за счёт, в том числе, эффекта Доплера, уводящего оптическое излучение этих объектов в инфракрасный диапазон.

Экзопланетология[править | править код]

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звёзд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно для того, чтобы обнаруживать не только сами экзопланеты, но даже спутники и спектральные линии этих планет. Это будет являться недостижимым показателем ни для одного наземного и космического телескопа до осени 2027 года, когда в строй будет введён Чрезвычайно большой телескоп с диаметром зеркала в 39,3 м[34]. Для поиска экзопланет будут также использованы данные, которые получил телескоп «Кеплер»[35] начиная с 2009 года. Однако возможностей телескопа будет недостаточно для получения изображений найденных экзопланет. Такая возможность появится не раньше середины 2030-х годов, если будет запущен новый космический телескоп (например, LUVOIR или HabEx[en]).

Протопланетные диски[править | править код]

В перечень первостепенных объектов для изучения входят 17 ближайших протопланетных дисков из двадцати, изображения которых были получены в 2003 году с помощью космического телескопа «Спитцер» и в 2018 году комплексом радиотелескопов ALMA. «Уэбб» будет измерять спектры протопланетных дисков, что позволит составить представление об их химическом составе, а также дополнить деталями внутреннего строения системы, наблюдаемые ранее комплексом ALMA в рамках проекта DSHARP (Disk Substructures at High Angular Resolution Project). Учёные ожидают, что средний инфракрасный диапазон, в котором будет работать телескоп (прибор MIRI), даст возможность выявить во внутренних частях протопланетных дисков активно формирующиеся каменистые планеты, похожие на Землю, по характерным химическим элементам, из которых они состоят. Будет измерено количество воды, окиси углерода, двуокиси углерода, метана и аммиака в каждом диске, а с помощью спектроскопии будет возможно оценить содержание и расположение внутри диска кислорода, углерода и азота (это важно для понимания, находится ли вода в потенциально обитаемой зоне, где прочие условия подходят для возникновения жизни)[36].

Водные миры Солнечной системы[править | править код]

Инфракрасные инструменты телескопа будут использованы для изучения водных миров Солнечной системы — спутника Юпитера Европы и спутника Сатурна Энцелада. Инструмент NIRSpec[en] будет использован для поиска биосигнатур (метан, метанол, этан) в гейзерах обоих спутников[37].

Инструмент NIRCam сможет получить изображения Европы в высоком разрешении, которые будут использованы для изучения её поверхности и поиска регионов с гейзерами и высокой геологической активностью. Состав зафиксированных гейзеров будет проанализирован с помощью инструментов NIRSpec и MIRI. Данные, полученные в ходе этих исследований, будут также использованы при исследовании Европы зондом Europa Clipper.

Для Энцелада, ввиду его удалённости и малых размеров, получить изображения в высоком разрешении не удастся, однако возможности телескопа позволят провести анализ молекулярного состава его гейзеров.

Малые тела Солнечной системы[править | править код]

Запланированы наблюдения Цереры, астероидов Паллада, Рюгу, транснептуновых объектов, кентавров и нескольких комет.

История[править | править код]

Изменение планируемой даты запуска и бюджета
Год Планируемая
дата запуска
Планируемый
бюджет
(млрд $)
1997 2007[38] 0,5[38]
1998 2007[39] 1[40]
1999 2007-2008[41] 1[40]
2000 2009[42] 1,8[40]
2002 2010[43] 2,5[40]
2003 2011[44] 2,5[40]
2005 2013 3[45]
2006 2014 4,5[46]
2008 2014 5,1[47]
2010 не раньше сентября 2015 ≥6,5[48]
2011 2018 8,7[49]
2013 2018 8,8[50]
2017 весна 2019[51] 8,8
2018 не раньше марта 2020[52] ≥8,8
2018 30 марта 2021[53] 9,66[54]
2020 31 октября 2021[55][56] ≥10[54][55][57]
2021 18 декабря 2021 ≥10
2021 22 декабря 2021[58] ≥10
2021 24 декабря 2021[59] ≥10
2021 25 декабря 2021[21] ≥10

Проблема выбора названия телескопа[править | править код]

Джеймс Уэбб, в честь которого назван телескоп

Идея строительства нового мощного космического телескопа возникла в 1996 году, когда американские астрономы выпустили доклад HST and Beyond[60][61].

До 2002 года телескоп назывался Next Generation Space Telescope («Космический телескоп нового поколения», NGST), поскольку новый инструмент должен продолжить исследования, начатые «Хабблом». Под этим же названием телескоп входил в состав комплексного проекта Пентагона AMSD по разработке сегментированного зеркала для разведывательных и лазерных ударных спутников[62]. Наличие военных в чисто научном проекте плохо влияло на репутацию проекта и NASA хотело разорвать прямую связь с военной программой AMSD на уровне названия. Поэтому в 2002 году, когда действительно проект телескопа стал заметно отличаться в конструкции зеркала от других собратьев по программе AMSD[63], NASA решило переименовать телескоп в честь второго руководителя НАСА Джеймса Уэбба (1906—1992), возглавлявшего агентство в 1961—1968 годах, во время реализации программы «Аполлон». Однако это также вызвало крупный скандал в научном сообществе США, более 1200 учёных и инженеров связанных с космическими исследованиями, включая известных учёных как Chanda Prescod-Weinstein, написали петицию с требованием переименовать телескоп ещё раз, так как Уэбб известен своим преследованием ЛГБТ сообщества среди персонала НАСА. По мнению авторов петиции Уэбб не заслуживает «памятника гомофобии». После бурной дискуссии, руководство НАСА решило оставить название с учётом его вклада в программу «Аполлон». Однако среди американских учёных многие в знак протеста используют в своих научных работах только сокращённое название JWST и договорились расшифровывать его иначе: Just Wonderful Space Telescope («просто замечательный космический телескоп»)[64].

Финансирование[править | править код]

Собранный телескоп Джеймса Уэбба во время тестирования развёртывания теплозащитного экрана, 2019 год

Стоимость и сроки проекта неоднократно увеличивалась. В июне 2011 года стало известно, что стоимость телескопа превысила изначальные расчёты по меньшей мере в четыре раза.

В бюджете НАСА, предложенном в июле 2011 года конгрессом, предполагалось прекращение финансирования строительства телескопа[65] из-за плохого управления и превышения бюджета программы[66][67], но в сентябре того же года бюджет был пересмотрен, и проект сохранил финансирование[68]. Окончательное решение о продолжении финансирования было принято сенатом 1 ноября 2011 года.

В 2013 году на постройку телескопа было выделено 626,7 млн долларов.

К весне 2018 года стоимость проекта возросла до 9,66 млрд долларов[54].

Теплозащитный экран[править | править код]

Испытательный образец теплозащитного экрана в развёрнутом состоянии на предприятии Northrop Grumman Corporation в Калифорнии, 2014 год
Принцип работы теплозащитного экрана

Теплозащитный экран космического телескопа «Джеймс Уэбб» состоит из 5 слоёв каптона, на каждый из которых нанесено покрытие из алюминия, и имеет размер 21,1 на 14,6 метров. Экран нужен для защиты основного зеркала и научных приборов обсерватории от потоков тепла и космического излучения. Первые два «горячих» слоя обладают покрытием из легированного кремния. Моделирование показывает, что максимальная температура первого слоя будет составлять 383 кельвин, а минимальная температура последнего слоя составит 36 кельвин. Механизм развёртывания экрана имеет 90 натяжных тросов, а также установка 107 спусковых устройств, которые будут удерживать слои каптона в правильном положении до момента развёртывания[69].

Изготовление оптической системы[править | править код]

Проблемы[править | править код]

Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра, чтобы измерить свет от самых далёких галактик. Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади[70].

Включение прототипа телескопа в проект Advanced Mirror System Demonstrator (AMSD) Пентагона[править | править код]

Для создания зеркала была инициирована программа Advanced Mirror System Demonstrator (AMSD). Проект AMSD являлся проектом двойного назначения. В ходе данного проекта должна была быть создана технология сегментированного зеркала, которое предназначалось для James Webb, перспективных спутников инфракрасной разведки и зеркала для фокусировки лазера для перспективного ударного спутника Space Based Laser (SBL)[62][70][71]

Зеркало по программе AMSD включало в себя следующие технические компоненты[63][62][72]:

  • Использование шестиугольных сегментов из которых можно собирать зеркала различной площади, сегментная форма также позволяла сворачивать телескоп в компатную форму в ракетоносителе
  • Сегменты выполнены в технологии адаптивной оптики, то есть не жёсткими, а «полужёсткими» и микромеханика позволяет корректировать кривизну зеркала для исправления ошибок сочленения или неправильной позиции зеркала
  • От 4х до 16 актуаторов для позиционирования и деформации зеркала в зависимости от версии устройства
  • Микромеханические приводы воздействуют на механический скелет жёсткости под зеркалом из углерода

Сегментированные зеркала легче и дешевле цельных, но имеют недостаток как зазоры в несколько миллиметров между сегментами. Это сказывается на том, что дифракционный лимит сегментированного зеркала определяется не только его диаметром, но и зависит от качества устранения микросдвигов между краями сегментов в разных направлениях, что порождает в свою очередь фазовый сдвиг и дифракционные эффекты. Адаптивная оптика сегментированных зеркал прежде всего предназначена для минимизации дифракции от зазоров между сегментами чётким выравниванием их в одной плоскости и подавления дифракции от вариабельности фокусировки разных сегментов[73]. Модель дифракционных искажений James Webb после регулировки адаптивной оптикой показывает, что конечно зазоры между сегментами ухудшают качество изображения, но на 90 % дифракция зависит от размеров зеркала как и в классических цельных зеркалах[74].

Дифракция телескопа также зависит от длины волны. В ближнем инфракрасном диапазоне разрешение James Webb составит 0,03 арксекунды[75], в длинноволновом инфракрасном диапазоне James Webb будет иметь разрешение даже меньше Hubble — 0,1 арксекунду[76]. Cнимки Hubble в видимом свете доступны с разрешением 0,06 арксекунды на уровне его теоретического предела[77].

Конструкция актуаторов сегментов основного зеркала. Три бинарных актуатора позволяют деформировать зеркало только с его перемещением. Центральный актуатор целиком выделен под адаптивную оптику — он управляет кривизной сегмента

Cегментированные зеркала с адаптивной оптикой при той же массе и стоимости в сравнении с классическим зеркалом дают существенно выше разрешение в том же диапазоне длин волн, а также несравнимо более высокую светосилу. После внедрения такой технологии в разведывательные спутники США, классическая оптика перестала быть нужной ЦРУ, и оно подарило NASA два зеркала-копии Hubble от спутников KH-11, так как больше в них не нуждается из-за устаревания технологии[63][78]. Прототип разведывательного инфракрасного спутника Пентагона в рамках программы AMSD на базе тех же зеркальных сегментов, что и для James Webb был изготовлен теми же подрядчиками (Northrop Grumman и другие) и передан в Академию ВМФ США для практического обучения офицеров использованию инфракрасных разведчиков такого класса. Проект был реализован под руководством заместителя руководителя Национального управления военно-космической разведки США генерала армии Елены Павликовски[79]. James Webb не является первым случаем использования одной технологии зеркала с разведывательными спутниками США. Телескоп Hubble использовался для отработки новой версии более крупного зеркала для разведывательных спутников KH-11 (Замочная Скважина)[80]. Журнал The Space Review, анализируя проект Елены Павликовски, отметил, что в космических телескопах общественность реагирует только на то, что ей позволяет знать Пентагон, в то время как современное развитие технологий космического наблюдения намного опережает то, что NASA разрешается сообщать в пресс-релизах. The Space Review отмечает опыт спутника Орион (Ментор), где на геостационарной орбите развёрнута конструкция радиотелескопа более чем 100 метров в диаметре, которая на порядки сложнее механики разложения James Webb. Также эксперты отмечают, что ВМФ США в своём пресс-релизе о разведывательном прототипе сообщает очень много деталей о практическом использовании адаптивной оптики с искривлением зеркал под воздействием микромеханики, что может означать, что это опыт полученный не со стенда, а с функционирующего на орбите спутника. По мнению экспертов это может говорить о том, что военные клоны James Webb уже успешно развёрнуты на орбите с целями аналогичными разведывательной системе SBIRS, как то было с первыми KH-11 запущенными задолго до запуска Hubble[81].

Инженеры в чистом помещении, чистят углекислым газом[en] испытательное зеркало покрытое золотом, 2015 год

Введённые правительством США режимы военной секретности для James Webb широко обсуждались в научном сообществе и крупных СМИ. Scientific American в 2014 году опубликовал статью о том, что научное сообщество откровенно удивлено тем, что чистым академическим учёным запрещено участвовать в руководстве проекта James Webb, что вызвало вопросы о балансе научных и военных целей проекта. Руководитель проекта, руководитель научной миссии и директор по астрофизике должны иметь высочайший для США уровень допуска к секретным военным материалам Top Secret. Это фактически требовало, чтобы научным руководством проекта занимались не астрофизики и учёные, а инженеры с опытом разработки спутников-шпионов. Бывший аналитик ЦРУ Аллен Томсон отметил, что хотя NASA использует очень часто двойные технологии в научных проектах, но такое требование крайне необычно для NASA и указывает на то, что проект создаётся под эгидой Национального управления военно-космической разведки США[82][83] В 2016 году NASA опубликовало видео James Webb, где было снята крышка с задней части вторичного зеркала, что позволяло увидеть микромеханику его регулировки, которое позволяет его поворачивать с точностью 140 нанометров в конечную позицию, то есть примерно на размер вируса ВИЧ. Изображение блока адаптивной оптики было размыто, на что обратили внимание журналисты из Business Insider и запросили у NASA разъяснения. На что NASA официально сообщило, что изображение размыто из-за того, что данное устройство James Webb попадает под регуляцию закона США об обращении технологий вооружения (ITAR), то есть микромеханика зеркал James Webb классифицируется как оружие в рамках законодательства США[84]. В 2017 году правительство США признало, что проект James Webb регулировался в рамках международного сотрудничества по законодательству регулирующему экспорт технологий вооружения, что крайне усложняло работу не американских участников проекта. Поэтому в 2017 году James Webb был выведен из под действия ITAR[85].

Программа AMSD является сотрудничеством между НАСА, Национальным управлением военно-космической разведки США и Военно-воздушными силами США. На основе исследований AMSD были построены и испытаны два экспериментальных зеркала. Одно из них было сделано из бериллия компанией Ball Aerospace & Technologies, другое — построено фирмой Kodak (ныне — ITT) из специального стекла[86].

Группа экспертов провела испытания обоих зеркал, целью которых было определить, насколько хорошо они выполняют свою задачу, сколько стоят и насколько легко (или трудно) было бы построить полноразмерное, 6,5-метровое зеркало. Эксперты рекомендовали зеркало из бериллия для телескопа Джеймса Уэбба по нескольким причинам, одна из которых — бериллий сохраняет свою форму при криогенных температурах. Кроме этого, решение Ball Aerospace & Technologies было дешевле, так как использовало меньше актуаторов, чем у конкурентов, что правда уменьшало возможности коррекции ошибок формы зеркала. Компания Northrop Grumman выбрала решение Ball по критериям «цена/качество», и Центр космических полётов Годдарда утвердил это решение.

Хотя решение Ball Aerospace & Technologies имеет только 4 актуатора, но обладает функциями адаптивной оптики. 3 актуатора по краям на самом деле являются 6 актуаторами, которые сдвоены и образуют «6D-актуатор», то есть головка каждого актуатора может занять независимое положение в плоскости перпендикулярной зеркалу. Это позволяет краевым би-актуаторам не только наклонять зеркало, но выдвигать его вперёд/назад, вращать вокруг своей оси, а также сдвигать центр зеркала от центральной точки сегмента в любую сторону. Би-актуаторы могут деформировать зеркало только одновременно с его перемещением. Центральный «3D-актуатор» целиком выделен под адаптивную оптику и управляет кривизной сегмента. Совместная работа всех актуаторов передаётся на 16 независимых точек позиции и перегиба зеркала. Шаг механического актуатора Ball составляет 7 нанометров, рабочий ход — 21 миллиметр. При «распарковке» зеркала актуатор сначала использует грубый механизм перемещения, а затем уже подключается высокоточный.

Как отмечалось выше, детали механики вторичного зеркала James Webb засекречены, но из публикации конструктора актуаторов Роберта Вардена и пресс-релиза НАСА[87] нам известно, что вторичное зеркало в целом имеет сходное устройство с остальными сегментами и управляется 6 актуаторами, то есть не имеет корректора кривизны, а только положения[63][88].

Оптическая схема телескопа. Свет отражается от вторичного зеркала, потом ещё одно зеркало направляет его на подвижное зеркало тонкой угловой настройки

Ball Aerospace & Technologies также из своих военных разработок переделало для James Webb такое устройство как зеркало тонкой рулевой настройки (Fine steering mirror).[89] Это устройство адаптивной оптики представляет собой зеркальце, которое может поворачиваться с точностью около 1 наноградуса на нужный угол.[90][91] Устройство позволяет таким образом изменять угол зрения телескопа путем небольшого срезания размера изображения по краям. За счет этого доступны несколько функций. В первую очередь может стабилизироваться направление на объект наблюдения. После разворота на новый объект телескопа могут быть остаточные вращения и они убирается этим прибором. Также не все приборы James Webb как спектрометры или субматрицы умеют работать на все его поле зрения и зеркало тонкой настройки позволяет не меняя положения телескопа наводить их на новый близкий объект.

Зеркало «Хаббла» и «Уэбба» в одном масштабе

Размер каждого из 18 шестиугольных сегментов зеркала составляет 1,32 метра от ребра до ребра, масса непосредственно самого́ зеркала в каждом сегменте — 20 кг, а масса всего сегмента в сборе (вместе с приводами точного позиционирования и т. д.) — 40 кг.

Существенно меньше известно об приборах наблюдения которые стыковались к зеркалам в программе AMSD. Однако приборы установленные на James Webb вероятно имеют также корни в адаптации военных технологий для научных целей. Ключевой компонент инфракрасных приборов James Webb как матрицы и фотосенсоры изготовлены Teledyne и Raytheon, которые являются основными поставщиками военной инфракрасной оптики Пентагона с незначительным объёмом гражданских заказов[92][93]. NASA также сообщило, что James Webb использует «солевую инфракрасную оптику» из сульфида цинка, лития фторида, бария фторида.[94] Солевая инфракрасная оптика является новым поколением инфракрасной оптики разработки Raytheon, которая по сравнению классической ИК-оптикой из германия, обладает маленьким поглощением инфракрасного излучения, что позволяет наблюдать очень тусклые объекты.[95][96][97] В оригинале Raytheon создал эту технологию для высокочувствительных ГСН ракет, в частности для ПТРК Джавелин.[98] Мирное применение этой технологии позволит James Webb наблюдать очень тусклые объекты как экзопланеты.

Настроенные одинаковым образом зеркала выделены одним цветом

Производство[править | править код]

Для зеркала «Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.

Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.

Основные конструктивные элементы телескопа

Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.

По завершении обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм[99], и готовый сегмент проходит повторные испытания на воздействие криогенных температур[70].

Развёртыванием зеркала управляет система из 132 отдельных приводов и моторов, которая вначале формирует его из трёх крупных фрагментов, а затем правильно позиционирует каждый из 18 сегментов и задаёт им необходимую кривизну.

28 августа 2019 года сборка телескопа «Джеймс Уэбб» была завершена — специалисты впервые соединили основное зеркало с платформой, включающей в себя солнцезащитный экран[100][101].

Испытания[править | править код]

10 июля 2017 года — начало финального испытания телескопа на воздействие криогенных температур со значением 37 К в космическом центре имени Джонсона в Хьюстоне, которое продлилось 100 дней[102].

Помимо испытаний в Хьюстоне аппарат прошёл серию механических испытаний в центре космических полётов Годдарда, в результате которых подтвердилось, что он сможет выдержать запуск на орбиту с помощью тяжёлой ракеты-носителя.

Пропускная способность атмосферы и спектральные линии химических соединений, которые являются маркерами Земля-подобных условий для возникновения жизни

В начале февраля 2018 года гигантские зеркала и различные приборы были доставлены на предприятие компании Northrop Grumman в Редондо-Бич для последнего этапа сборки телескопа. Там шло сооружение двигательного модуля телескопа и его солнцезащитного экрана. Когда вся конструкция была собрана, её доставка была запланирована на морском судне из Калифорнии во французскую Гвиану[103].

  • 30 мая 2019 года в испытательном центре корпорации Northrop Grumman завершена проверка работы агрегатного отсека телескопа в различных температурных режимах: элементы конструкции телескопа в специальной вакуумной камере подвергались воздействию температуры от −148°С до +102°С. Во время испытаний для охлаждения использовался жидкий азот, а для нагрева — термобатареи[104][105].
  • 28 августа 2019 года инженеры успешно состыковали защитный экран с основным зеркалом будущего телескопа. Далее специалисты соединили электрические цепи двух частей телескопа, после чего провели функциональные испытаний этих цепей[106]. После того, как обе половины телескопа были собраны, «Джеймс Уэбб» упаковали в специальную капсулу для запуска и отправили на космодром Куру во Французской Гвиане.
  • 7 января 2020 года СМИ со ссылкой на представителя НАСА Эрика Смита сообщили, что основные работы по созданию телескопа им. Джеймса Уэбба завершены, но на протяжении 15 месяцев будет проведена ещё серия наземных испытаний. В 2020 году аппаратуру телескопа испытывали на устойчивость к вибрации и к шуму при запуске ракетой-носителем «Ариан-5», планировалась смена части электронной аппаратуры, нештатно сработавшей во время предыдущих испытаний, и ещё одна проверка всех систем, чтобы оценить, как комплексные испытания повлияли на аппаратуру обсерватории[107].
  • 31 марта 2020 сообщено об успешном испытании полного развёртывания всего зеркала со специальным прикреплённым устройством для компенсации гравитации, чтобы имитировать невесомость[108].
  • 13 июля 2020 года специалисты объявили о завершении первого из заключительных комплексных (акустические, вибрационные и электрические) испытаний телескопа, которое длилось 15 дней[109][110].
  • 25 августа 2020 года Центр космических полётов им. Годдарда сообщил, что специалисты завершили первый полный цикл наземных испытаний научных инструментов, и что в ближайшее время должна начаться новая серия вибрационных и акустических испытаний. В ходе испытаний проверялось, сможет ли «Джеймс Уэбб» пережить нагрузки во время старта ракеты и его вывода на орбиту[111].
  • Зоны чувствительности разных инструментов
    1 марта 2021 года телескоп прошёл финальные функциональные испытания, в ходе которых специалисты проверили электрические цепи телескопа и работу системы связи. Электрические испытания продлились 17 дней, за это время специалисты проверили функциональность всех электронных компонентов телескопа и его научных инструментов. В ходе проверки систем связи моделировалась ситуация обмена данными обсерватории с Землёй, для этого инженеры передали на борт телескопа, находящегося в чистой комнате компании Northrop Grumman Space Systems в Калифорнии, команды через эмулятор Сети дальней космической связи НАСА. Кроме того, инженеры отработали ситуацию передачи управления телескопом от одного командного центра другому, а также успешно отправили несколько корректировок на борт обсерватории, пока она выполняла нужные команды. В реальных условиях связь с обсерваторией будут обеспечивать три комплекса Сети дальней космической связи NASA в Калифорнии, Испании и Австралии, а также антенны в Нью-Мексико и европейские станции в Кении и Германии[112][113].
  • 7 апреля 2021 года специалисты уложили пятислойный теплозащитный экран телескопа в последний раз. В следующий раз он должен будет развернуться самостоятельно после запуска. Укладка продлилась месяц и включала в себя ряд трудоёмких операций, таких как зигзагообразное складывание каждого слоя и их выравнивание, укладка 90 натяжных тросов, а также установка 107 спусковых устройств, которые будут удерживать слои каптона в правильном положении до момента развёртывания. В течение следующих трёх месяцев специалисты завершат перевод экрана в полётную конфигурацию, в частности установят и закрепят все кабели, крышки для экранов, а также узлы системы разворачивания экрана, таких как направляющие стрелы и основания экранов[69][114].
  • 11 мая 2021 года в ходе испытаний в последний раз перед отправкой в космос было развёрнуто главное зеркало телескопа[115][116].
  • Камера ближнего инфракрасного диапазона
    1 июля 2021 года ЕКА сообщило, что телескоп прошёл финальную проверку на совместимость с ракетой-носителем Ariane 5, которая будет выводить его в космос. Работы включали в себя оценку уровней внешних воздействий на телескоп во время нахождения под головным обтекателем ракеты и разработку плана полёта ракеты и отделения телескопа от разгонного блока[117][118].
  • 26 августа 2021 года НАСА сообщило, что все испытания по телескопу завершены, он готов к отправке на космодром Куру для запуска в ноябре текущего года[119][120].

Ход миссии[править | править код]

Установка NIRCAM в телескоп
  • 25 декабря 2021 года в 12:20 UTC состоялся успешный запуск. После коррекции орбиты на околоземной орбите, аппарат на протяжении четырёх недель будет двигаться к пункту назначения в Точку Лагранжа L2 системы ЗемляСолнце, которая находится на расстоянии 1,5 млн километров от Земли[121].
  • К 29 декабря 2021 года телескоп совершил две из трёх коррекций траектории, развернул антенну для передачи на Землю научных и других данных, а также массив солнечных батарей[122][123].
  • К 2 января 2022 года основная часть работ по развёртыванию солнцезащитного экрана была завершена. На телескопе успешно развёрнуты левая и правая части экрана, благодаря чему он обрёл ромбовидную форму[124].
  • 4 января 2022 года раскрытие теплового щита телескопа было полностью завершено, его пятислойная структура из покрытого алюминием каптона успешно расправлена и на всех слоях установлено необходимое для работы натяжение[125].
  • 8 января 2022 года телескоп успешно развернул главное зеркало[126].
  • 12 января 2022 года НАСА сообщило, что все актуаторы для настойки зеркала исправны и реагируют на команды[87].
  • Первые научные эксперименты планируется начать летом 2022 года. Основная причина, по которой для начала работы потребуется полгода, заключается в том, что телескопу необходимо остыть до рабочей температуры 7К (−266 ºC)[127].

Оборудование[править | править код]

JWST будет иметь следующие научные инструменты для проведения исследования космоса:

  • Камера ближнего инфракрасного диапазона (англ. Near-Infrared Camera);
  • Прибор для работы в среднем диапазоне инфракрасного излучения (англ. Mid-Infrared Instrument, MIRI);
  • Спектрограф ближнего инфракрасного диапазона (англ. Near-Infrared Spectrograph, NIRSpec);
  • Установка спектрографа MIRI в телескоп
    Датчик точного наведения (англ. Fine Guidance Sensor, FGS) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (англ. Near InfraRed Imager and Slitless Spectrograph, NIRISS).

Камера ближнего инфракрасного диапазона[править | править код]

Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива ртутно-кадмиево-теллуровых[en] детекторов[128][129]. Рабочий диапазон прибора составляет от 0,6 до 5 мкм. Его разработка поручена Аризонскому университету и Центру продвинутых технологий компании Lockheed Martin.

В задачи прибора входят:

Как отдельные каналы спектрометра MIRI накладываются на изображение инфракрасной камеры

Камера на самом деле является целым комплексом различных приборов[75]:

  • Матрица для съёмки в диапазоне 0,6—2,3 мкм (Short wavelength channel) с разрешением 0,031 арксекунды на пиксель и 256 уровней яркости;
  • Матрица для съёмки в диапазоне 2,4—5,0 мкм (Long wavelength channel) с разрешением 0,063 арксекунды на пиксель с чёрно-белым изображением;
  • Поскольку инфракрасные матрицы имеют довольно маленький динамический диапазон, то камера оборудована двумя барабанами фильтров как по яркости, так и по длине волны;
  • Призма для режима спектрографии, в этом случае звёзды «размазываются» на фотографии в полосу спектра;
  • Коронограф из 3 круглых и 2 квадратных масок, который позволяет закрыть само яркое изображение звезды или планеты, затем может использоваться спектрометр и наборы фильтров на разные длины волн;
  • Линзы дефокусировки, которые позволяют увидеть дифракцию зеркала телескопа и его отдельных сегментов, что используется для их тонкой настройки. Также линзы дефокусировки для снимков для сверхдлинных выдержек до 50 часов. Наблюдаемые напрямую дифракционные искажения телескопа в этом режиме позволяют произвести компьютерную обработку изображения для их очистки по мере возможности.

Существенный момент для понимания, что камера не снимает снимки в бытовом понимании фотоаппаратов. Снимки, которые предназначены для широкой публики — это компьютерная модель полученная как наложение множества снимков с разными фильтрами друг на друга и с компьютерной очисткой дифракции насколько это возможно.

Спектрограф ближнего инфракрасного диапазона[править | править код]

Спектрограф ближнего инфракрасного диапазона будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. Инструмент способен делать спектроскопию среднего разрешения в диапазоне длин волн 1—5 и низкого разрешения с длиной волны 0,6—5[130].

Многие объекты, которые «Уэбб» будет изучать, излучают настолько мало света, что телескопу для анализа спектра необходимо собирать свет от них в течение сотен часов. Чтобы изучить тысячи галактик за 5 лет работы телескопа, спектрограф был разработан с возможностью наблюдения за 100 объектами на площади неба 3×3 угловых минуты[130] одновременно. Для этого учёные и инженеры Годдарда разработали новую технологию микрозатворов для управления светом, входящим в спектрограф.

Полученные спектры сразу нескольких объектов в NIRSpec

Суть технологии, позволяющей получать 100 одновременных спектров, заключается в микроэлектромеханической системе, именуемой «массив микрозатворов» (англ. microshutter array). У ячеек микрозатворов спектрографа NIRSpec есть крышки, которые открываются и закрываются под действием магнитного поля. Каждая ячейка размером 100 на 200 мкм[131] индивидуально управляется и может быть открытой или закрытой, предоставляя или, наоборот, блокируя часть неба для спектрографа, соответственно.

Именно эта регулируемость позволяет прибору делать спектроскопию такого количества объектов одновременно. Поскольку объекты, которые будет исследовать NIRSpec, находятся далеко и тусклы, инструмент нуждается в подавлении излучения от более близких ярких источников. Микрозатворы работают подобно тому, как люди смотрят искоса, чтобы сосредоточиться на объекте, блокируя нежелательный источник света. Прибор уже разработан и в данный момент проходит испытания в Европе[132].

Прибор для работы в среднем диапазоне инфракрасного излучения[править | править код]

Прибор для работы в среднем диапазоне инфракрасного излучения (5—28[133]) состоит из камеры с датчиком, имеющим разрешение 1024×1024 пикселя[134], и спектрографа.

Как спектрометр NIRSpec работает поверх изображения инфракрасной камеры. Использование специального микрозатвора MSA позволяет считывать спектры сначала крупных участков, а потом искать источник интересного спектра внутри

MIRI состоит из трёх массивов мышьяко-кремниевых детекторов. Чувствительные детекторы этого прибора позволят увидеть красное смещение далёких галактик, формирование новых звёзд и слабо видимые кометы, а также объекты в поясе Койпера. Модуль камеры предоставляет возможность съёмки объектов в широком диапазоне частот с большим полем зрения, а модуль спектрографа обеспечивает спектроскопию среднего разрешения с меньшим полем зрения, что позволит получать подробные физические данные об удалённых объектах.

Номинальная рабочая температура для MIRI — К. Такая температура не может быть достигнута использованием только пассивной системы охлаждения. Вместо этого, охлаждение производится в два этапа: установка предварительного охлаждения на основе пульсационной трубы охлаждает прибор до 18 К, затем теплообменник с адиабатическим дросселированием (эффект Джоуля — Томсона) понижает температуру до 7 К.

MIRI разрабатывает группа под названием MIRI Consortium, состоящая из учёных и инженеров из стран Европы, команды сотрудников Лаборатории реактивного движения в Калифорнии и учёных из ряда институтов США[135].

Режимы работы прибора следующие[136].

  • Режим фотографирования с барабаном фильтров разной длины волны. Разрешение прямо связано с разрешающей способностью зеркала и его дифракционным пределом. На длине волны 5,6 мкм разрешение 0,22 арксекунды, на 25,5 мкм разрешение падает до 0,82 арксекунды.
  • Режим фотографирования малыми встроенными матрицами ярких объектов. Для ярких объектов основная матрица содержит встроенные субматрицы. Преимущество субматриц в том, для снимка полной матрицей (full frame) нужна выдержка 2,8 секунды. Самая маленькая субматрица имеет разрешение всего 64x72 пиксела, но умеет снимать с выдержкой 0,085 секунды. Субматрицы позволяют наблюдать за динамическими процессами с быстрым изменением яркости.
  • Режим спектрографии с двумя призмами. В этом режиме объекты превращаются в полосу с их спектром.
  • Коронограф состоящий из масок, которые закрывают тело объекта и позволяют изучать его атмосферу.
Тестирование FGS в криогенной камере
Оптическая схема NIRISS

FGS/NIRISS[править | править код]

Датчик точного наведения (FGS) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS) будут упакованы вместе в «Уэббе», но по сути это два разных устройства[137][138]. Оба устройства разрабатываются Канадским космическим агентством, и они уже получили прозвище «канадские глаза» по аналогии с «канадской рукой». Этот инструмент уже прошёл интегрирование со структурой ISIM в феврале 2013 года.

Датчик точного наведения[править | править код]

Датчик точного наведения (FGS) позволит «Уэббу» производить точное наведение, чтобы он мог получать изображения высокого качества.

Камера FGS может формировать изображение из двух смежных участков неба размером 2,4×2,4 угловых минуты каждый, а также считывать информацию 16 раз в секунду с небольших групп пикселей размером 8×8, чего достаточно для нахождения соответствующей опорной звезды с 95-процентной вероятностью в любой точке неба, включая высокие широты.

Основные функции FGS включают в себя:

  • получение изображения для определения положения телескопа в пространстве;
  • получение предварительно выбранных опорных звёзд;
  • обеспечение системы управления положением англ. Attitude Control System измерениями центроида опорных звёзд со скоростью 16 раз в секунду.

Во время вывода на орбиту телескопа FGS также будет сообщать об отклонениях при развёртывании главного зеркала.

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф[править | править код]

Принцип работы «мультизатворов» NIRSpec c получением спектров сразу нескольких объектов

Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф (NIRISS) работают в диапазоне 0,8—5,0 и является специализированным инструментом с тремя основными режимами, каждый из которых работает с отдельным диапазоном.

Спектрометр NIRSpec

NIRISS будет использоваться для выполнения следующих научных задач:

Примечания[править | править код]

Комментарии
  1. По другим данным стоимость оценивается в $9.7bn (How a powerful new telescope will reveal distant secrets)
Источники
  1. An IR spectrometer for the James Webb Space Telescope (англ.). www.ama-science.org. АМА. Дата обращения: 15 января 2022.
  2. JWST (James Webb Space Telescope)
  3. https://jwst.nasa.gov/about.html
  4. Дорси Д., Уильямс Э., Стоун Б. ТвиттерTwitter, 2006.
  5. Virtual Launch Packet ONLINE (англ.)
  6. Webb Space Telescope (англ.) — P. 16.
  7. Webb Space Telescope (англ.) — P. 39.
  8. Телескоп «Джеймс Уэбб» приготовился наблюдать за Вселенной. Секрет фирмы. Дата обращения: 12 января 2022.
  9. Самый мощный и большой космический телескоп «Джеймс Вебб» развернули в космосе. Украинская правда (9 января 2022). Дата обращения: 12 января 2022.
  10. The largest telescope mirror ever put into space (англ.). ESA. Дата обращения: 12 января 2022.
  11. James Webb Space Telescope. An overview (англ.). ScienceDirect Topics. Дата обращения: 12 января 2022.
  12. A Mirror of the Past — Herschel and the James Webb Space Telescope (англ.). Bath Royal Literary and Scientific Institution. Дата обращения: 12 января 2022.
  13. Comparison: Webb vs Hubble Telescope (англ.). jwst.nasa.gov. Дата обращения: 12 января 2022.
  14. The James Webb Space Telescope and Herschel (англ.). ESA. Дата обращения: 12 января 2022.
  15. Mirrors Webb/NASA (англ.). webb.nasa.gov. Дата обращения: 30 декабря 2021.
  16. James Webb Space Telescope JWST History: 1989–1994 (англ.). Space Telescope Science Institute, Baltimore, Maryland (2017). Дата обращения: 29 декабря 2018. Архивировано 3 февраля 2014 года.
  17. Instrumentation of JWST (англ.). Space Telescope Science Institute (29 января 2020). Дата обращения: 29 января 2020.
  18. L2, the second Lagrangian Point (англ.). Дата обращения: 5 декабря 2021.
  19. The Sunshield Webb
  20. Jeff Foust. JWST launch slips to November (англ.). SpaceNews (2 июня 2021).
  21. 1 2 Partners Confirm Webb Launch on Dec. 25 — James Webb Space Telescope (англ.). NASA. Дата обращения: 8 января 2022.
  22. Телескопу «Джеймс Уэбб» может хватить топлива на 20 лет работы — NASA. УНИАН. Дата обращения: 11 января 2022.
  23. Телескоп «Джеймс Уэбб» успешно развернул главное зеркало. Meduza (9 января 2022). Дата обращения: 9 января 2022.
  24. Mission and Launch Quick Facts — «After reaching its orbit, Webb undergoes science and calibration testing. Then, regular science operations and images will begin to arrive, approximately six months after launch. However, it is normal to also take a series of „first light“ images that may arrive slightly earlier.»
  25. Overbye, Dennis; Roulette, Joey A Giant Telescope Grows in Space — Everything is going great for the James Webb Space Telescope. So far.. The New York Times (8 января 2022). Дата обращения: 9 января 2022.
  26. Koren, Marina Even NASA Seems Surprised by Its New Space Telescope — The $10 billion mission is working better than anyone could have predicted. The Atlantic (8 января 2022). Дата обращения: 10 января 2022.
  27. Felicia Chou, Natasha Pinol, Christine Pulliam, Ray Villard. Lynn Jenner: Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope (англ.). NASA (15 июня 2017). Дата обращения: 22 ноября 2019.
  28. Королёв, Владимир. Объявлены первые цели телескопа «Джеймс Уэбб». N+1 (16 июня 2017). Дата обращения: 22 ноября 2019.
  29. NASA утвердило список первых целей для космического телескопа «Джеймс Уэбб». N+1 (3 апреля 2021).
  30. NASA’s James Webb Space Telescope General Observer Scientific Programs Selected (англ.). NASA (30 марта 2021).
  31. Webb factsheet (англ.). ESA (2 июня 2021).
  32. James Webb Space Telescope news (англ.). CSA (ASC) (8 сентября 2021).
  33. Webb Science: The End of the Dark Ages: First Light and Reionization. Webb will be a powerful time machine with infrared vision that will peer back over 13.5 billion years to see the first stars and galaxies forming out of the darkness of the early universe (англ.). НАСА. Дата обращения: 22 ноября 2019. Архивировано 21 марта 2013 года.
  34. Антон Бирюков. Щепотка бесконечности. Пузыри Ферми, астероиды и внеземная жизнь. Лента.Ру (25 марта 2013). Дата обращения: 22 ноября 2019. Архивировано 4 апреля 2013 года.
  35. «Кеплер» нашёл десять новых возможных двойников Земли. РИА Наука (19 июня 2017). Дата обращения: 22 ноября 2019.
  36. В НАСА сообщили, какие планетные системы изучит телескоп «Джеймс Уэбб». РИА Новости (23 сентября 2021).
  37. Villard, Eric Lynn Jenner: NASA’s Webb Telescope Will Study Our Solar System’s «Ocean Worlds» (англ.). NASA (24 августа 2017). Дата обращения: 22 ноября 2019.
  38. 1 2 Berardelli, Phil Next Generation Space Telescope will peer back to the beginning of time and space. CBS (27 октября 1997).
  39. Simon Lilly. The Next Generation Space Telescope (NGST) (англ.). University of Toronto (27 ноября 1998).
  40. 1 2 3 4 5 Reichhardt, Tony. US astronomy: Is the next big thing too big? // Nature. — 2006. — Март (т. 440, № 7081). — С. 140—143. — doi:10.1038/440140a. — Bibcode2006Natur.440..140R.
  41. Cosmic Ray Rejection with NGST (англ.).
  42. MIRI spectrometer for NGST (англ.) (недоступная ссылка). Архивировано 27 сентября 2011 года.
  43. NGST Weekly Missive (англ.) (25 апреля 2002).
  44. NASA Modifies James Webb Space Telescope Contract (англ.) (12 ноября 2003).
  45. Problems for JWST (англ.) (21 мая 2005).
  46. Refocusing NASA's vision (англ.) // Nature. — 2006. — 9 March (vol. 440, no. 7081). — P. 127. — doi:10.1038/440127a. — Bibcode2006Natur.440..127..
  47. Cowen, Ron Webb Telescope Delayed, Costs Rise to $8 Billion (англ.) (недоступная ссылка). ScienceInsider (25 августа 2011). Архивировано 14 января 2012 года.
  48. Котляр, Павел Орбитальный телескоп не уложился ни в бюджет, ни в сроки. Infox.ru (11 ноября 2010). Дата обращения: 24 декабря 2010. Архивировано 8 февраля 2012 года.
  49. Amos, Jonathan JWST price tag now put at over $8bn. BBC (22 августа 2011).
  50. Moskowitz, Clara. NASA Assures Skeptical Congress That the James Webb Telescope Is on Track (англ.). Scientific American (30 марта 2015). Дата обращения: 29 января 2017.
  51. NASA’s James Webb Space Telescope to be Launched Spring 2019 (англ.). NASA (28 сентября 2017).
  52. NASA Delays Launch of James Webb Space Telescope to 2020 (англ.). Space.com[en] (27 марта 2018). Дата обращения: 27 марта 2018.
  53. NASA Completes Webb Telescope Review, Commits to Launch in Early 2021 (англ.). Felicia Chou / Natasha Pinol. NASA (27 июня 2018). Дата обращения: 28 июня 2018.
  54. 1 2 3 NASA Completes Webb Telescope Review, Commits to Launch in Early 2021 (англ.). NASA (27 июня 2018). Дата обращения: 22 ноября 2019.
  55. 1 2 Запуск «Джеймса Уэбба» перенесли на конец октября 2021 года. N+1 (17 июля 2020). Дата обращения: 16 ноября 2020.
  56. NASA Announces New James Webb Space Telescope Target Launch Date (англ.). NASA (16 июля 2020).
  57. Laura Mallonee «Golden Eye» Wired magazine. November 2019, p. 24
  58. Update on Webb telescope launch (англ.). ESA.int (22 ноября 2021).
  59. Webb Space Telescope Launch Date Update — James Webb Space Telescope
  60. Кристина Уласович. Что увидит сменщик «Хаббла»?. Новый космический телескоп «Джеймс Уэбб» запустят в 2019 году. N+1 (19 марта 2018). Дата обращения: 22 ноября 2019.
  61. ALAN DRESSLER: Exploration and the Search for Origins: A Vision for UltravioletOptical-Infrared Space Astronomy (англ.) (pdf). «HST & BEYOND» COMMITTEE (15 мая 1996). Дата обращения: 22 ноября 2019.
  62. 1 2 3 Kodak AMSD Mirror Development Program (англ.). ResearchGate. Дата обращения: 8 января 2022.
  63. 1 2 3 4 H. Philip Stahl, Ph.D. JWST Primary Mirror Technology Development // NASA. — 2010.
  64. Alexandra Witze. NASA won’t rename James Webb telescope — and astronomers are angry (англ.) // Nature. — 2021-10-01. — Vol. 598, iss. 7880. — P. 249–249. — doi:10.1038/d41586-021-02678-1.
  65. Правительство США пожалело денег на преемника «Хаббла». Lenta.ru (7 июля 2011).
  66. Appropriations Committee Releases the Fiscal Year 2012 Commerce, Justice, Science Appropriations (англ.). The US House of Representatives. Архивировано 20 февраля 2012 года.
  67. Проект телескопа им. Джеймса Вебба оказался под угрозой отмены. Звёздная Миссия. Дата обращения: 8 января 2022.[неавторитетный источник?]
  68. «Джеймсу Уэббу» дали шанс на спасение. Lenta.ru. Дата обращения: 8 января 2022.
  69. 1 2 Теплозащитный экран «Джеймса Уэбба» сложили в последний раз. N+1 (8 апреля 2021).
  70. 1 2 3 The Primary Mirror (англ.). NASA. Дата обращения: 15 марта 2013. Архивировано 16 марта 2013 года.
  71. Alicia Byberg, J. Kevin Russell, Donna Kaukler, Robert V. Burdine. Advanced Mirror System Demonstrator (AMSD) Risk Management (англ.). — 2002. — 17 August.
  72. Norihide Miyamura. On-orbit alignment and wavefront compensation of segmented aperture telescope using adaptive optics // International Conference on Space Optics — ICSO 2018. — SPIE, 2019-07-12. — Т. 11180. — С. 2518–2526. — doi:10.1117/12.2536171.
  73. Mitchell Troy, Gary Chananb. Diffraction Effects From Giant Segmented Mirror Telescopes // NASA. — 2016.
  74. Дифракционная модель зеркала James Webb // NASA.
  75. 1 2 JWST Near Infrared Camera — JWST User Documentation (англ.). jwstcf.stsci.edu. Дата обращения: 13 января 2022.
  76. Key Facts — Webb/NASA (англ.). webb.nasa.gov. Дата обращения: 13 января 2022.
  77. [email protected] Optical jet in galaxy NGC 3862 (англ.). www.spacetelescope.org. Дата обращения: 13 января 2022.
  78. John Wenz. NASA Begins Turning a Spy Satellite Into a New Hubble (англ.). Popular Mechanics (5 января 2016). Дата обращения: 8 января 2022.
  79. NPS New Home for Giant Segmented-Mirror Space Telescope (англ.). nps.edu. Дата обращения: 7 января 2022.
  80. The Power to Explore Архивная копия от 15 июня 2011 на Wayback Machine, NASA. В частности, Chapter XII — The Hubble Space Telescope Архивная копия от 27 сентября 2011 на Wayback Machine Chapter 12, p. 483
  81. The Space Review: Creating an inspector «mascot» satellite for JWST (англ.). www.thespacereview.com. Дата обращения: 8 января 2022.
  82. Clara Moskowitz. Wanted by NASA: Space Telescope Director with Spy Credentials (англ.). Scientific American. Дата обращения: 9 января 2022.
  83. Wanted: Astronomer with Top Secret Clearance (англ.). Federation Of American Scientists. Дата обращения: 9 января 2022.
  84. Dave Mosher. NASA is trying to keep part of its giant golden telescope a secret (англ.). Business Insider. Дата обращения: 7 января 2022.
  85. Satellite Export Controls Get Another Update, JWST No Longer Under ITAR (англ.). Дата обращения: 8 января 2022.
  86. James Webb Space Telescope Advanced Mirror Demonstrator tests under way at NASA's Marshall Center — Marshall Space Flight Center Space News 03-076 (05-14-03) (англ.). www.nasa.gov. Дата обращения: 7 января 2022.
  87. 1 2 Webb Begins Its Months-Long Mirror Alignment — James Webb Space Telescope (англ.). blogs.nasa.gov. Дата обращения: 13 января 2022.
  88. Robert M. Warden. Cryogenic Nano-Actuator for JWST // European Space Mechanisms and Tribology Symposium. — 2006.
  89. Fast Steering Mirrors (англ.). ball.com. Дата обращения: 16 января 2022.
  90. Miroslaw Ostaszewski, William Vermeer. Fine steering mirror for the James Webb Space Telescope. — 2007-09-01. — Т. 6665. — С. 66650D. — doi:10.1117/12.731917.
  91. CEDRAT TECHNOLOGIES. fine steering mirror.
  92. Infrared Detectors Webb/NASA (англ.). webb.nasa.gov. Дата обращения: 13 января 2022.
  93. Defense and Security | Teledyne Imaging (англ.). www.teledyneimaging.com. Дата обращения: 13 января 2022.
  94. NASA's GMS. GMS: Elements of Webb: Salt Ep10 (англ.). svs.gsfc.nasa.gov (12 января 2022). Дата обращения: 16 января 2022.
  95. Zinc Sulphide Multispectral (ZnS) Optical Material. www.crystran.co.uk. Дата обращения: 16 января 2022.
  96. Lithium Fluoride (LiF) Optical Material. www.crystran.co.uk. Дата обращения: 16 января 2022.
  97. Barium Fluoride Optical Material. www.crystran.co.uk. Дата обращения: 16 января 2022.
  98. Anthony James Whelan. The Development of a Warhead into an Integrated Weapon System to Provide an Advanced Battlefield Capability.
  99. Mirrors (англ.) (недоступная ссылка). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа. Дата обращения: 18 апреля 2014. Архивировано 21 марта 2013 года.
  100. NASA завершило сборку космического телескопа «Джеймс Уэбб». N+1 (30 августа 2021).
  101. NASA’s James Webb Space Telescope Has Been Assembled for the First Time (англ.). NASA (28 августа 2021).
  102. Началось финальное криогенное тестирование Космического телескопа Джеймса Уэбба. N+1 (18 июля 2017).
  103. Зеркала и другие элементы телескопа James Webb доставлены в Калифорнию для сборки. ТАСС (8 февраля 2018).
  104. На телескопе James Webb завершена проверка аппаратуры на термоустойчивость. ТАСС (30 мая 2019).
  105. NASA’s James Webb Space Telescope Emerges Successfully from Final Thermal Vacuum Test (англ.). NASA (30 мая 2019).
  106. NASA’s James Webb Space Telescope Has Been Assembled for the First Time (англ.). NASA (28 августа 2019).
  107. В США закончили основные работы по созданию телескопа James Webb. ТАСС (7 января 2020).
  108. NASA’s James Webb Space Telescope Full Mirror Deployment a Success (англ.). NASA (31 марта 2020).
  109. Запуск «Джеймса Уэбба» перенесли на конец октября 2021 года. N+1 (17 июля 2021).
  110. NASA’s James Webb Space Telescope Completes Comprehensive Systems Test (англ.). NASA (13 июля 2021).
  111. Научные инструменты телескопа «Джеймс Уэбб» прошли полную проверку. ТАСС (25 августа 2020).
  112. «Джеймс Уэбб» прошёл финальные функциональные испытания. N+1 (2 марта 2021).
  113. NASA’s James Webb Space Telescope Completes Final Functional Tests to Prepare for Launch (англ.). NASA (1 марта 2021).
  114. NASA’s Webb Telescope Packs Its Sunshield for a Million Mile Trip (англ.). NASA (7 апреля 2021).
  115. «Джеймс Уэбб» провёл финальный тест развёртывания главного зеркала. N+1 (13 мая 2021).
  116. Webb’s Golden Mirror Wings Open One Last Time on Earth (англ.). NASA (11 мая 2021).
  117. «Джеймс Уэбб» признали готовым к запуску в космос. N+1 (3 июля 2021).
  118. Webb passes key launch clearance review (англ.). ESA (1 июля 2021).
  119. «Джеймс Уэбб» завершил испытания и готов к отправке на космодром. N+1 (27 августа 2021).
  120. NASA’s James Webb Space Telescope Has Completed Testing (англ.). NASA (25 августа 2021).
  121. Татьяна Нечет. Телескоп «Джеймс Уэбб» преодолел 32 % пути: следить за его полётом можно онлайн. ITC.ua (28 декабря 2021). Дата обращения: 8 января 2022.
  122. Телескоп «Джеймс Уэбб» успешно развернул платформу для натяжения солнечного экрана. 3DNews Daily Digital Digest. Дата обращения: 8 января 2022.
  123. Телескоп «Джеймс Уэбб» успешно развернул антенну для передачи данных на Землю. 3DNews Daily Digital Digest. Дата обращения: 8 января 2022.
  124. Развёртывание солнцезащитного экрана на телескопе «Джеймс Уэбб» завершается. 3DNews Daily Digital Digest. Дата обращения: 8 января 2022.
  125. Новейший телескоп «Джеймс Уэбб» успешно раскрыл тепловой щит. РИА Новости (4 января 2022). Дата обращения: 8 января 2022.
  126. Телескоп «Джеймс Уэбб» успешно развернул главное зеркало
  127. Запуск «Джеймса Уэбба» прошёл успешно — начинается новая эра в астрономии. Хабр. Дата обращения: 8 января 2022.
  128. Near Infrared Camera (NIRCam) (англ.). НАСА. Дата обращения: 16 марта 2013. Архивировано 21 марта 2013 года.
  129. Near Infrared Camera (англ.) (недоступная ссылка). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа (21 октября 2013). Дата обращения: 18 апреля 2014. Архивировано 21 марта 2013 года.
  130. 1 2 Near-Infrared Spectrograph (NIRSpec) (англ.) (недоступная ссылка — история ). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа (январь 2014). Дата обращения: 18 апреля 2014.
  131. Microshutters (англ.). НАСА. Дата обращения: 17 марта 2013. Архивировано 21 марта 2013 года.
  132. Near Infrared Spectrograph (NIRSpec) (англ.). НАСА. Дата обращения: 16 марта 2013. Архивировано 21 марта 2013 года.
  133. MIRI (недоступная ссылка)
  134. Mid Infrared Instrument (англ.) (недоступная ссылка — история ).
  135. Mid-Infrared Instrument (MIRI) (англ.). NASA. Дата обращения: 16 марта 2013. Архивировано 21 марта 2013 года.
  136. JWST Mid Infrared Instrument — JWST User Documentation (англ.). jwstcf.stsci.edu. Дата обращения: 13 января 2022.
  137. Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS) (англ.). NASA. Дата обращения: 16 марта 2013. Архивировано 21 марта 2013 года.
  138. FGS — Fine Guidance Sensor (англ.) (недоступная ссылка). James Webb Space Telescope. Институт исследований космоса с помощью космического телескопа (1 марта 2013). Дата обращения: 18 апреля 2014. Архивировано 21 марта 2013 года.

Ссылки[править | править код]