Асимптотически параллельные прямые (Gvnbhmkmncyvtn hgjgllyl,udy hjxbdy)

Перейти к навигации Перейти к поиску
Две прямые через заданную точку P, асимптотически параллельные прямой R.

В нейтральной или абсолютной геометрии и в геометрии Лобачевского могут иметься много прямых, параллельных данной прямой и проходящих через точку вне этой прямой. Однако две параллельные могут быть ближе к , чем остальные (по одной с каждой стороны).

Имеет смысл в этом случаен дать другое определение параллельности для нейтральной геометрии. Если имеются очень близкие параллельные к данной прямой, их называют асимптотически параллельными или параллельными в пределе.

Для лучей отношение асимптотической параллельности является отношением эквивалентности, которое включает терминальное отношение эквивалентности.

Асимптотические параллельные могут образовывать две или три стороны асимптотического треугольника.

Определение

[править | править код]
Луч Aa является асимптотически параллельным лучу Bb, что записывается как

Луч является асимптотически параллельным лучу , если они котерминальны или если они лежат на различных прямых, не равных прямой , не пересекаются и любой луч внутри угла пересекает луч [1].

Различные прямые, содержащие асимптотические параллельные лучи, не пересекаются.

Доказательство

[править | править код]

Предположим, что прямые, содержащие различные параллельные лучи, пересекаются. По определению они не могут пересечься на стороне , в которой находится луч . Тогда они должны пересекаться на стороне , противоположной лучу , обозначим эту точку . Тогда (здесь P = прямой угол) . Противоречие.

Примечания

[править | править код]

Литература

[править | править код]
  • Robin Hartshorne. Geometry: Euclid and beyond. — Corr. 2nd print.. — New York, NY [u.a.]: Springer, 2000. — ISBN 978-0-387-98650-0.