Формулы сокращённого умножения многочленов — часто встречающиеся случаи умножения многочленов. Многие из них являются частным случаем бинома Ньютона. Изучаются в средней школе в курсе алгебры.
- — квадрат суммы или разности двух выражений
- — квадрат суммы трёх выражений
Разность квадратов двух чисел (многочленов) может быть представлена в виде произведения по формуле[1]:
Математическое доказательство закона простое. Применив распределительный закон к правой части формулы, получим:
Из-за коммутативности умножения средние члены уничтожаются:
и остаётся
Полученная идентичность — одна из наиболее часто используемых в математике. Среди множества применений она дает простое доказательство неравенства о среднем арифметическом, геометрическом и гармоническом для двух переменных.
Доказательство справедливо в любом коммутативном кольце.
Наоборот, если это тождество выполняется в кольце R для всех пар элементов a и b, то R коммутативно. Чтобы убедиться в этом, применим закон распределения к правой части уравнения и получим:
- .
Чтобы это было равно , мы должны иметь
для всех пар a, b, поэтому R коммутативно.
- - куб суммы (разности) двух чисел
- - сумма (разность) кубов
- - куб суммы
- , где
- , где
- , где — чётное число
- , где — нечётное число
Если показатель степени — составное число, то можно использовать формулы для одного из его составляющих множителей, например:
и т. д.
Если мы ограничиваемся действительными числами, то сумма или разность произвольных степеней вида () может быть выражена в виде произведения нескольких многочленов, каждый из которых имеет степень не выше 2 и имеет вид либо , либо , либо , где — некоторый коэффициент (в каждом случае свой).
Для чётных :
Для нечётных :
Если же мы работаем с комплексными числами, то то же самое может быть выражено в виде произведения нескольких многочленов степени 1 (см. ниже).
Для произвольной чётной степени:
- , где пробегает все n возможных значений
Для произвольной нечётной степени:
- , где пробегает все n возможных значений
- , где
- , где
- М. Я. Выгодский. Справочник по элементарной математике. — Москва, 1958.