Теорема Пуанкаре о классификации гомеоморфизмов окружности (Mykjybg Hrgutgjy k tlgvvnsntgenn ikbykbkjsn[bkf ktjr'ukvmn)
В теории динамических систем, теорема Пуанкаре о классификации гомеоморфизмов окружности описывает возможные типы обратимой динамики на окружности, в зависимости от числа вращения итерируемого отображения f. Грубо говоря, оказывается, что динамика итераций отображения в определённой степени похожа на динамику поворота на соответствующий угол.
А именно, пусть задан гомеоморфизм окружности f. Тогда:
1) Число вращения рационально тогда и только тогда, когда у f есть периодические точки. При этом знаменатель числа вращения — это период любой периодической точки, а циклический порядок на окружности точек любой периодической орбиты такой же, как и у точек орбиты поворота на . Далее, любая траектория стремится к некоторой периодической как в прямом, так и в обратном времени (- и -предельные траектории при этом могут быть разными).
2) Если число вращения f иррационально, то возможны два варианта:
- i) либо у f есть плотная орбита, и тогда гомеоморфизм f сопряжён повороту на . В этом случае все орбиты f плотны (поскольку это верно для иррационального поворота);
- ii) либо у f есть канторово инвариантное множество C, являющееся единственным минимальным множеством системы. В этом случае все траектории стремятся к C как в прямом, так и в обратном времени. Кроме того, отображение f полусопряжено повороту на : для некоторого отображения h степени 1,
При этом множество C в точности является множеством точек роста h — иными словами, с топологической точки зрения, h схлопывает интервалы дополнения до C.
См. также
[править | править код]Ссылки
[править | править код]- Каток А. Б., Хассельблат Б.[нем.]. Введение в современную теорию динамических систем = Introduction to the Modern Theory of Dynamical Systems / пер. с англ. А. Кононенко при участии С. Ферлегера. — М.: Факториал, 1999. — 768 с. — ISBN 5-88688-042-9.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |