Степень трансцендентности (Vmyhyu, mjguveyu;yumukvmn)
Степень трансцендентности — максимальное число алгебраически независимых элементов в расширении поля. Степень трансцендентности даёт возможность измерения величины расширения.
Определение
[править | править код]Пусть — расширение поля до поля Рассмотрим всевозможные алгебраически независимые подмножества поля над полем Степень трансцендентности данного расширения определяется как наибольшая мощность среди таких подмножеств.
Обычно обозначается или
Замечания
[править | править код]Если алгебраически независимых элементов в расширенном поле нет, то множество их пусто, и степень трансцендентности равна нулю. Таким образом, нулевая степень трансцендентности означает, что данное расширение является алгебраическим. Если же степень трансцендентности не нулевая, то в существуют «трансцендентные» (не алгебраические по отношению к исходному полю) элементы.
Связанные понятия
[править | править код]Подмножество из называется базисом трансцендентности расширения если:
- элементы алгебраически независимы над
- базис полон, то есть является алгебраическим расширением поля полученного присоединением элементов к полю
Можно показать, что для любого заданного расширения поля базисы трансцендентности существуют (в доказательстве используется аксиома выбора), причём все они имеют одинаковую мощность, равную степени трансцендентности. Базисы трансцендентности — полезный инструмент для доказательства различных теорем существования про гомоморфизмы полей.
Расширение поля называется чисто трансцендентным, если в существует подмножество алгебраически независимых над элементов такое, что
Примеры
[править | править код]- Для расширения поля рациональных чисел до поля вещественных чисел степень трансцендентности есть континуум. Это следует из того, что множество алгебраических чисел счётно.
- Поле рациональных функций переменных над полем является чисто трансцендентным расширением Его степень трансцендентности равна а в качестве базиса трансцендентности можно взять
- Поле является расширением поля со степенью трансцендентности 1, потому что является алгебраическим числом, а — трансцендентным.
- Поле также является расширением поля его степень трансцендентности не определена (либо 1, либо 2), поскольку неизвестно, являются ли константы и алгебраически независимыми.
Свойства
[править | править код]Если мы имеет двукратное расширение поля: то степень трансцендентности равна (теоретико-множественной) сумме степеней трансцендентности и Базис трансцендентности получается объединением базисов трансцендентности для и
Литература
[править | править код]- Бурбаки Н. Алгебра. Многочлены и поля. Упорядоченные группы. М.: Наука, 1965.
- Ван дер Варден. Алгебра. Определения, теоремы, формулы. — СПб.: Лань, 2004. — 624 с. — ISBN 5-8114-0552-9. Архивная копия от 4 марта 2016 на Wayback Machine
- Зарисский О., Самюэль П. Коммутативная алгебра, том 1. М: Иностранная литература, 1963.
- Ленг С. Алгебра. М: Мир, 1967.
Ссылки
[править | править код]- Кузьмин Л. В. Трансцендентное расширение