Рациональная поверхность (Jgenkugl,ugx hkfyj]ukvm,)

Перейти к навигации Перейти к поиску

Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие[англ.] размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классификации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.

Любую неособую рациональную поверхность можно получить путём неоднократного раздутия[англ.] минимальной рациональной поверхности. Минимальными рациональными поверхностями являются проективная плоскость и поверхности Хирцебруха[англ.] Σr для r = 0 или r ≥ 2.

Инварианты: Все плюрироды[англ.] равны 0 и фундаментальная группа тривиальна.

Ромб Ходжа:

                 1
           0          0
      1        1+n        1,
           0          0
                 1

где n равен 0 для проективной плоскости, 1 для поверхностей Хирцебруха[англ.] и больше 1 для других рациональных поверхностей.

Группа Пикара[англ.] является нечётной унимодулярной решёткой I1,n, за исключением поверхностей Хирцебруха[англ.] Σ2m, для которых это чётная унимодулярная решётка II1,1.

Теорема Кастельнуово

[править | править код]

Гвидо Кастельнуово доказал, что любая комплексная поверхность, для которой q и P2 (иррегулярность и второй плюрирод) равны нулю, является рациональной. Это используется в классификации Энрикеса — Кодаиры для распознавания рациональных поверхностей. Зарисский[1] доказал, что теорема Кастельнуово верна также для полей положительной характеристики.

Из теоремы Кастельнуово следует также, что любая унирациональная[англ.] комплексная поверхность рациональна. Большинство унирациональных комплексных многообразий размерности 3 и выше не являются рациональными. Для характеристики p > 0 Зарисский[1] нашёл пример унирациональных поверхностей (поверхности Зарисского[англ.]), не являющихся рациональными.

Одно время было неясно, являются комплексные поверхности с нулевыми q и P1 рациональными или нет, но Федериго Энрикес нашёл контрпример (поверхность Энрикеса[англ.]).

Примеры рациональных поверхностей

[править | править код]

Примечания

[править | править код]

Литература

[править | править код]
  • Wolf P. Barth, Klaus Hulek, Chris A.M. Peters, Antonius Van de Ven. Compact Complex Surfaces. — Berlin: Springer-Verlag. — Т. 4. — (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge). — ISBN 978-3-540-00832-3.
  • Arnaud Beauville. Complex algebraic surfaces. — 2nd. — Cambridge University Press, 1996. — Т. 34. — (London Mathematical Society Student Texts). — ISBN 978-0-521-49510-3.
  • Oscar Zariski. On Castelnuovo's criterion of rationality pa = P2 = 0 of an algebraic surface // Illinois Journal of Mathematics. — 1958. — Т. 2. — С. 303–315. — ISSN 0019-2082.