Размерность Вапника — Червоненкиса (Jg[byjukvm, Fghuntg — Cyjfkuyutnvg)
Размерность Вапника — Червоненкиса или VC-размерность — это характеристика семейства алгоритмов для решения задачи классификации с двумя классами, характеризующая сложность или ёмкость этого семейства. Это одно из ключевых понятий в теории Вапника-Червоненкиса о статистическом машинном обучении, названное в честь Владимира Вапника и Алексея Червоненкиса.
Сами Вапник и Червоненкис предпочитают называть эту величину комбинаторной размерностью, так как выяснилось, она была известна алгебраистам еще до открытия их теории машинного обучения.
Определение
[править | править код]Пусть задано множество и некоторое семейство индикаторных функций (алгоритмов классификации, решающих правил) , где — аргумент функций, — вектор параметров, задающий функцию. Каждая такая функция сопоставляет каждому элементу множества один из двух заданных классов. VC-размерностью семейства называется наибольшее число , такое, что существует подмножество из элементов множества , которые функции из могут разбить на два класса всеми возможными способами. Если же такие подмножества существуют для сколь угодно большого , то VC-размерность полагается равной бесконечности.
VC-размерность можно обобщить и на случай семейства функций , принимающих действительные значения. Его VC-размерность определяется как VC-размерность семейства индикаторных функций , где пробегает область значений функций .[1]
Примеры
[править | править код]Как пример, рассмотрим задачу о разбиении точек на плоскости на два класса прямой линией — это так называемый линейный классификатор. Множество из любых трёх точек, не лежащих на одной прямой, может быть разделено прямой линией на два класса всеми возможными способами ( способами, на рисунке ниже показаны три из них), но множества из четырёх и более точек — уже нет. Поэтому VC-размерность линейного классификатора на плоскости равна трём.
Примеры разделения трёх точек на два класса |
Разделение невозможно для этих четырёх точек |
В общем случае, VC-размерность линейных классификаторов в -мерном пространстве равна .
См. также
[править | править код]Ссылки
[править | править код]Примечания
[править | править код]- ↑ Hastie, T., Tibshirani R., Friedman J. Chapter 7.9. Vapnik–Chervonenkis Dimension // The Elements of Statistical Learning: Data Mining, Inference, and Prediction. — 2nd ed. — Springer-Verlag, 2009. — 746 p. — ISBN 978-0-387-84857-0..