Выделение признаков (Fd;ylyuny hjn[ugtkf)

Перейти к навигации Перейти к поиску

Выделение признаков — это разновидность абстрагирования, процесс снижения размерности, в котором исходный набор исходных переменных сокращается до более управляемых групп (признаков) для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных[1]. Выделение признаков используется в машинном обучении, распознавании образов и при обработке изображений. Выделение признаков начинает с исходного набора данных, выводит вторичные значения (признаки), для которых предполагается, что они должны быть информативными и не быть избыточными, что способствует последующему процессу машинного обучения и обобщению шагов, а в некоторых случаях ведёт и к лучшей человеческой интерпретацией данных.

Когда входные данные алгоритма слишком большие для обработки и есть подозрение, что данные избыточные (например, измерения проведены как в футах, так и в метрах, или повторяемость изображений представлена пикселами), то они могут быть преобразованы в сокращённый набор признаков (называемый вектором признаков). Определение подмножества начальных признаков называется отбором признаков[2]. Отобранные признаки проверяются на содержание необходимой информации во входных данных, так что желаемая задача может быть выполнена с помощью этого сокращённого набора вместо исходных полных данных.

Общий подход

[править | править код]

Выделение признаков вовлекает сокращение числа ресурсов, необходимых для описания большого набора данных. Когда осуществляется анализ сложных данных, одна из главных проблем вызывается числом вовлекаемых переменных. Анализ с большим числом переменных в общем случае требует большой памяти и вычислительной мощности, а также это может вызвать для алгоритмов задачи классификации переподгонку относительно тренировочной выборки, что приводит в общем случае к плохим результатам для новых образцов. Выделение признаков является основным термином для методов построения комбинаций переменных, чтобы обойти эти проблемы, тем не менее описывая данные с достаточной точностью. Многие практики машинного обучения верят, что должным образом оптимизированное выделение признаков является ключом для построения эффективной модели[3].

Результаты могут быть улучшены с использованием построенного набора зависящих от приложения признаков, обычно построенных экспертами. Один из таких процессов называется конструированием признаков. Альтернативно, используются техники общего снижения размерности, такие как:

Обработка изображений

[править | править код]

Одна из очень важных областей приложения выделения признаков — обработка изображений, в которой используются алгоритмы для обнаружения и изоляции различных желательных порций или фигур (признаков) цифрового изображения или видеопотока. Одна из важных областей приложения методов — оптическое распознавание символов.

Низкоуровневое

[править | править код]

Движущиеся изображения

[править | править код]

Методы, основанные на форме

[править | править код]

Гибкие методы

[править | править код]
  • Деформируемые, параметризованные фигуры
  • Активные контуры (извивающиеся)

Выделение признаков в программном обеспечении

[править | править код]

Многие пакеты статистической обработки обеспечивают возможность выделения признаков и сокращения размерности. Общие системы численной обработки, такие как MATLAB, Scilab, NumPy и язык R поддерживают некоторые простые техники выделения признаков (например, метод главных компонент) с помощью встроенных команд. Более специфичные алгоритмы часто доступны как общедоступные скрипты или разработки сторонних фирм. Существуют также пакеты, разработанные для конкретных приложений машинного обучения специально для выделения признаков.[4]

Примечания

[править | править код]
  1. What is Feature Extraction? deepai.org. Архивировано 2 марта 2021 года.
  2. Alpaydin, 2010, с. 110.
  3. Reality AI Blog, "Its all about the features", September 2017, https://reality.ai/it-is-all-about-the-features/ Архивная копия от 18 августа 2019 на Wayback Machine
  4. см., например, https://reality.ai/ Архивная копия от 25 марта 2021 на Wayback Machine

Литература

[править | править код]
  • Ethem Alpaydin. Introduction to Machine Learning. — London: The MIT Press, 2010. — ISBN 978-0-262-01243-0.