Многочлен Эрара (Bukikclyu |jgjg)

Перейти к навигации Перейти к поиску

Многочленом Эрара для заданного многогранника в многомерном пространстве называется многочлен, значение которого в любой целой точке совпадает с количеством целых точек пространства (вообще говоря, точек любой решётки), находящихся внутри данного многогранника, увеличенного в раз.

Объём самого многогранника (с коэффициентом гомотетии ) равен старшему коэффициенту многочлена Эрара, что можно рассматривать как вариант многомерного обобщения теоремы Пика.

Названы в честь Эжена Эрара[англ.], который изучал их в 1960-х годах.

Определение

[править | править код]

Пусть  — многогранник с целыми вершинами, и — его гомотетия с целым коэффициентом . Обозначим через число целых точек в . Можно доказать, что число выражается как многочлен от ; этот многочлен и называется многочленом Эрара.

  • для единичного целого -мерного куба .
  • (Взаимность Эрара — Макдональда) Число внутренних целых точек в равно
где d — размерность P.
  • Любая валюация на целых многогранниках, инвариантная относительно целых сдвигов и , выражается как линейная комбинация коэффициентов многочлена Эрара.[1]
  • Для любого -мерного многогранника , три коэффициента многочлена Эрара имеют простую интерпретацию
    • свободный член многочлена Эрара равен 1.
    • Главный коэффициент при равен объёму многогранника.
    • Коэффициент при равен половине суммы отношений площадей граней к определителю решётки, получаемой пересечением целочисленных точек с продолжением грани.
  • В частности, при многочлен Эрара многоугольника равен
где есть площадь многоугольника, а — число целочисленных точек на его границе. Подставив , получаем формулу Пика.

Примечания

[править | править код]
  1. Betke, Ulrich; Kneser, Martin (1985) Zerlegungen und Bewertungen von Gitterpolytopen, J. Reine Angew. Math. 358, 202-208.