Девятая проблема Гильберта (:yfxmgx hjkQlybg Inl,Qyjmg)

Перейти к навигации Перейти к поиску

Девятая проблема Гильберта — одна из 23 проблем Гильберта, которые Давид Гильберт высказал в 1900 году на II Международном конгрессе математиков в Париже и которые оказали исключительное влияние на развитие математики в XX веке.

Проблема была частично решена Эмилем Артином доказательством закона взаимности Артина для абелевых расширений алгебраических числовых полей[1][2]. Позже в 1948 году И. Р. Шафаревичем был найден самый общий закон взаимности степенных вычетов в полях алгебраических чисел[3][4].

В неабелевом случае, проблема по-прежнему не решена.

Формулировка

[править | править код]

9. Доказательство общего закона взаимности в любом числовом поле.

<…> Требуется доказать закон взаимности для степенных вычетов l-го порядка в любом числовом поле, l — нечётное простое число и если l есть целая степень числа 2. <…>[5]

  1. Emil Artin. Beweis des allgemeinen Reziprozitätsgesetzes // Abh. Math. Semin. Univ. Hamburg. — 1927. — Т. 5. — С. 131—141.
  2. Emil Artin. Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetzes // Abh. Math. Semin. Univ. Hamburg. — 1930. — Т. 7. — С. 159—164.
  3. И.Р. Шафаревич. Общий закон взаимности // УМН. — 1948. — Т. 3, № 3. — С. 165.
  4. И.Р. Шафаревич. Общий закон взаимности и его приложения в теории полей алгебраических чисел // Тр. I Конгр. венгерских математиков. — Будапешт, 1952. — С. 291—298.
  5. Перевод доклада Гильберта с немецкого — М. Г. Шестопал и А. В. Дорофеева, опубликован в книге Архивированная копия. Дата обращения: 4 января 2012. Архивировано из оригинала 17 октября 2011 года.Архивированная копия. Дата обращения: 4 января 2012. Архивировано из оригинала 17 октября 2011 года.
  6. David Hilbert. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900 (нем.). — Текст доклада, прочитанного Гильбертом 8 августа 1900 года на II Международном конгрессе математиков в Париже. Дата обращения: 27 августа 2009. Архивировано 8 апреля 2012 года.