Характер биквадратичного вычета (}gjgtmyj Qntfg;jgmncukik fdcymg)

Перейти к навигации Перейти к поиску

Характер биквадратичного вычета — теоретико-числовая функция двух аргументов, являющаяся частным случаем символа степенного вычета. Также является характером в простом поле.

Характер биквадратичного вычета является аналогом символа Лежандра, и для его вычисления используется биквадратичный закон взаимности, являющийся аналогом квадратичного закона взаимности.

Определение

[править | править код]

Рассмотрим D=Z[i] — кольцо целых гауссовых чисел, то есть чисел вида , где a и b — целые числа.

Пусть  — простое в кольце D, с нормой . Характер биквадратичного вычета определяется следующим образом:

  • , если делится на .
  • , если не делится на и .
  • Во всех остальных случаях  — одно из значений , лежащее в классе вычетов (такое значение однозначно определено).

Биквадратичный закон взаимности

[править | править код]

Назовём , не являющееся единицей, примарным, если оно сравнимо с 1 по модулю идеала . При этом неединица примарна тогда и только тогда, когда , или , .

Пусть и  — взаимно простые примарные элементы в D, тогда

Другие свойства характера биквадратичного вычета

[править | править код]
  • тогда и только тогда, когда сравнение разрешимо, то есть тогда и только тогда, когда  — биквадратичный вычет
  • Мультипликативность:
  • Периодичность: если , то
  • Если  — простое примарное, то

Список литературы

[править | править код]
  • Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. — Москва: Мир, 1987.