Фотоэлектронная спектроскопия (Skmkzlytmjkuugx vhytmjkvtkhnx)
Фотоэлектронная спектроскопия — метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Метод фотоэлектронной спектроскопии применим к веществу в газообразном, жидком и твёрдом состояниях, и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости).
В фотоэлектронной спектроскопии применяются монохроматическое рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эВ. Источниками излучения в фотоэлектронных спектрометрах служит излучение рентгеновской трубки, разряда в гелии и синхротронное излучение. Регистрируется распределение электронов по кинетическим энергиям. Из закона сохранения энергии можно найти кинетическую энергию электрона
где - энергия кванта света, - энергия связи электрона относительно уровня Ферми, - потери энергии электрона по пути к поверхности, в основном за счет рассеяния на кристаллической решетке, - кинетическая энергия вылетевшего в вакуум электрона. В фотоэлектронном спектр состоит из спектра электронов из внутренних электронных уровней атомов, электронов из валентной зоны и поверхностных состояний наложенных на спектр вторичных электронов. Процесс фотоэмиссии можно разбить на 3 стадии:
- Поглощение фотона электроном в твердом теле, процесс описывается матричным элементом перехода из нормального состояния в возбужденное
- Движение электрона к поверхности, при котором электрон может претерпевать рассеяние на кристаллической решетке и создавать вторичные электроны. В зависимости от кинетической энергии электрона в твердом теле наблюдается выход фотоэлектронов с разной глубины от поверхности. Так при 50 эВ фотоэлектрон достигается минимальная глубина выхода фотоэлектрона 0.5—1.0 нм. При увеличении кинетической энергии электрона возрастает глубина выхода фотоэлектрона, что позволяет при 1000 эВ исследовать электронную структуру твердого тела пренебрегая поверхностной электронной структурой.
- Преодоление поверхностного потенциального барьера, в том случае, когда кинетическая энергия электрона больше работы выхода твердого тела.
По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе. Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эВ в рентгеновской области и до сотых долей эВ в ультрафиолетовой области). Для молекул энергии связи электронов во внутренних оболочках образующих их атомов зависят от типа химической связи (химические сдвиги), поэтому фотоэлектронная спектроскопия успешно применяется в аналитической химии для определения состава вещества и в физической химии для исследования химической связи.
В химии метод фотоэлектронной спектроскопии известен под названием ЭСХА — электронная спектроскопия для химического анализа (ESCA — electronic spectroscopy for chemical analysis).
См. также
[править | править код]- Ультрафиолетовая спектроскопия
- Рентгеновская фотоэлектронная спектроскопия
- Ультрафиолетовая фотоэлектронная спектроскопия
Ссылки
[править | править код]- Определение Электронной Зонной Структуры CdHgTe Методом Угловой Фотоэлектронной Спектроскопии
- ARPES-эксперимент в фермиологии квазидвумерных металлов (Обзор)
- Г. Юинг Инструментальные методы химического анализа. — М.: Мир, 1989.
Для улучшения этой статьи по физике желательно:
|