Термогенез (Myjbkiyuy[)
Термогенез — это процесс производства тепла в организмах. Он встречается у всех теплокровных животных и некоторых видов термогенных растений, например, у восточной скунсовой капусты, лилии Вуду (Sauromatum venosum), гигантских водяных лилий рода Victoria. Сосновая карликовая омела обыкновенная (Arceuthobium americanum) рассеивает семена взрывным образом посредством термогенеза[1].
Типы
[править | править код]В зависимости от того, инициируются ли термогенные процессы движением или преднамеренным движением мышц, их можно классифицировать следующим образом:
- Сократительный термогенез, связанный с физическими нагрузками (EAT)
- Несократительный термогенез, не связанный с физической нагрузками (NEAT): энергия, расходуемая на все, что не связано со сном, едой или спортивными упражнениями[2].
- Термогенез, индуцированный диетой (DIT)
Сократительный термогенез
[править | править код]Один из способов поднять температуру — дрожь. Дрожь производит тепло, потому что преобразование химической энергии АТФ в кинетическую энергию путем частого сокращения мышц приводит к тому, что почти вся затраченная энергия рассеивается в виде тепла. Дрожь используется для повышения температуры тела впадающих в спячку млекопитающих (например, некоторых летучих мышей и сусликов), при выходе этих животных из спячки.
Несократительный термогенез
[править | править код]Несократительный термогенез происходит в бурой жировой ткани[3], которая присутствует почти у всех плацентарных животных (свиньи — единственное известное в настоящее время исключение)[4][5]. Бурая жировая ткань имеет уникальный разобщающий белок — термогенин (также известный как разобщающий белок-1). Термогенины уменьшают градиент протонов митохондрии, образующийся при окислительном фосфорилировании. Они делают это, увеличивая проницаемость внутренней мембраны митохондрий, позволяя протонам, которые были закачаны в межмембранное пространство, возвращаться в матрицу митохондрий.
Термогенины активируется в клетках бурого жира жирными кислотами и ингибируется нуклеотидами[6]. Жирные кислоты высвобождаются следующим сигнальным каскадом (см. иллюстрацию): При активации симпатической нервной системы высвобождаются норадреналин на бета-3 адренергический рецептор, находящийся на плазматической мембране клетки. Это активирует аденилатциклазу, которая катализирует превращение АТФ в циклицескую-АМФ (цАМФ). цАМФ активирует протеинкиназу А, в результате чего её активные C-субъединицы освобождаются от регуляторных R-субъединиц. Активная протеинкиназа А, в свою очередь, фосфорилирует гормон-чувствительную липазу, тем самым активируя её. Липаза превращает триацилглицеролы в свободные жирные кислоты, которые активируют термогенин, подавляя ингибирование, вызванное пуриновыми нуклеотидами (АДФ и ГДФ), что вызывает приток протонов в матрикс митохондрии в обход АТФ-синтазы. Этот процесс разъединяет окислительное фосфорилирование; энергия протонной движущей силы рассеивается в виде тепла, а не производит макроэрг АТФ из АДФ.
Термогенез также может быть вызван утечкой из натрий-калиевого насоса и насоса Ca2+[7]. Термогенезу способствуют бесполезные циклы, такие как одновременное возникновение липогенеза и липолиза[8] или гликолиза и глюконеогенеза. В более широком контексте на бесполезные циклы могут влиять циклы активности/отдыха, такие как цикл Летнего времени (цикл Summermatter)[9].
Во время прекращения термогенеза термогенин инактивируется, а остаточные жирные кислоты удаляются путем окисления, позволяя клетке вернуться к своему нормальному энергосберегающему состоянию.
Ацетилхолин стимулирует мышцы, повышая скорость метаболизма[10].
При низкой потребности в термогенезе, свободные жирные кислоты по большей части используются для производства энергии посредством липолиза.
Полный список генов человека и мыши, регулирующих индуцированный холодом термогенез (CIT) у живых животных (in vivo) или образцов тканей (ex vivo), был собран[11] и доступен в CITGeneDB[12].
Регуляция
[править | править код]Несократительный термогенез регулируется главным образом гормонами щитовидной железы и симпатической нервной системой. Некоторые гормоны, такие как норэпинефрин и лептин, могут стимулировать термогенез, активируя симпатическую нервную систему. Повышение уровня инсулина после еды может быть причиной термогенеза, вызванного диетой (термический эффект пищи). Прогестерон также повышает температуру тела.
См. также
[править | править код]Примечания
[править | править код]- ↑ Rolena A.J. deBruyn, Mark Paetkau, Kelly A. Ross, David V. Godfrey & Cynthia Ross Friedman (2015). «Thermogenesis-triggered seed dispersal in dwarf mistletoe» Архивная копия от 14 февраля 2015 на Wayback Machine.
- ↑ Levine, JA (December 2002). "Non-exercise activity thermogenesis (NEAT)". Best Practice & Research. Clinical Endocrinology & Metabolism. 16 (4): 679—702. doi:10.1053/beem.2002.0227. PMID 12468415.
- ↑ Stuart Ira Fox. Human Physiology. Twelfth Edition. McGraw Hill. 2011. p. 667.
- ↑ Hou, Lianjie (April 2017). "Pig Has No Brown Adipose Tissue". The FASEB Journal. 31 (S1). doi:10.1096/fasebj.31.1_supplement.lb695.
{{cite journal}}
: Википедия:Обслуживание CS1 (не помеченный открытым DOI) (ссылка) - ↑ Hayward, John S. (1992). "Evolution of brown fat: its absence in marsupials and monotremes". Canadian Journal of Zoology. 70 (1): 171—179. doi:10.1139/z92-025.
- ↑ Andriy Fedorenko, Polina V. Lishko, Yuriy Kirichok. Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria (англ.) // Cell. — 2012-10. — Vol. 151, iss. 2. — P. 400–413. — doi:10.1016/j.cell.2012.09.010. Архивировано 22 июля 2021 года.
- ↑ Morrissette, Jeffery M. (2003). "Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans)". Journal of Experimental Biology. 206 (5): 805—812. doi:10.1242/jeb.00158. ISSN 0022-0949. PMID 12547935.
- ↑ G, Solinas (2004-11-19). "The Direct Effect of Leptin on Skeletal Muscle Thermogenesis Is Mediated by Substrate Cycling Between De Novo Lipogenesis and Lipid Oxidation" (PDF). FEBS Letters (англ.). 577 (3): 539—44. doi:10.1016/j.febslet.2004.10.066. PMID 15556643. Архивировано (PDF) 23 августа 2021. Дата обращения: 23 августа 2021.
- ↑ Summermatter, S. (November 2012). "PGC-1α and exercise in the control of body weight". International Journal of Obesity. 36 (11): 1428—1435. doi:10.1038/ijo.2012.12. ISSN 1476-5497. PMID 22290535.
- ↑ "Fever and the thermal regulation of immunity: the immune system feels the heat". Nature Reviews Immunology. 15 (6): 335—349. 2015. doi:10.1038/nri3843. PMID 25976513.
- ↑ Li, Jin (2018). "CITGeneDB: a comprehensive database of human and mouse genes enhancing or suppressing cold-induced thermogenesis validated by perturbation experiments in mice". Database. 2018. doi:10.1093/database/bay012. PMID 29688375.
- ↑ CITGeneDB . Дата обращения: 23 августа 2021. Архивировано 29 октября 2020 года.