Теорема о движении центра масс системы (Mykjybg k ;fn'yunn eyumjg bgvv vnvmybd)
Теоре́ма о движе́нии це́нтра масс (це́нтра ине́рции) системы — одна из теорем динамики, следствие законов Ньютона. Утверждает, что ускорение центра масс системы не зависит от внутренних сил взаимодействия между телами системы, и связывает это ускорение с внешними силами, действующими на систему[1][2].
Системой, о которой идёт речь в теореме, может являться любая механическая система, например, совокупность материальных точек, протяжённое тело или совокупность протяжённых тел.
Стандартная формулировка теоремы
[править | править код]Нередко при рассмотрении движения системы полезно знать закон движения её центра масс. В общем случае этот закон, составляющий содержание теоремы о движении центра масс, формулируется следующим образом[1]:
Произведение массы системы на ускорение её центра масс равно геометрической сумме всех действующих на систему внешних сил.
Доказательство
[править | править код]Пусть система состоит из материальных точек с массами и радиус-векторами . Центром масс (центром инерции) называется[1][3] геометрическая точка, радиус-вектор которой удовлетворяет равенству
где — масса всей системы, равная
Дифференцируя два раза по времени, для ускорения центра масс получаем:
где — ускорение материальной точки с номером i.
Для последующего рассмотрения разделим все силы, действующие на тела системы, на два типа:
- внешние — силы, действующие со стороны тел, не входящих в рассматриваемую систему. Равнодействующую внешних сил, действующих на материальную точку с номером i, обозначим ;
- внутренние — силы, с которыми взаимодействуют друг с другом тела само́й системы. Силу, с которой на точку с номером i действует точка с номером k, будем обозначать . Соответственно, сила воздействия i-й точки на k-ю точку будет обозначаться . Для будет
Используя введённые обозначения, второй закон Ньютона для каждой из рассматриваемых материальных точек можно записать в виде
Просуммировав такие уравнения для всех i, получим:
Выражение представляет собой сумму внутренних сил, действующих в системе. Учтём теперь, что по третьему закону Ньютона в этой сумме каждой силе соответствует сила такая, что и, значит, выполняется Поскольку вся сумма состоит из таких пар, сама сумма равна нулю. Таким образом,
Далее, обозначив и подставив полученное выражение в равенство для , приходим к уравнению
- или
Таким образом, движение центра масс определяется только внешними силами, а внутренние силы никакого влияния на это движение оказать не могут. Последняя формула и является математическим выражением теоремы о движении центра масс системы.
Альтернативная формулировка теоремы
[править | править код]Вид итоговой формулы для в точности тот же, что и у формулы второго закона Ньютона. Отсюда следует справедливость такой формулировки теоремы о движении центра масс[1][3]:
Центр масс движется так, как двигалась бы материальная точка, масса которой равна массе системы, под действием силы, равной сумме всех внешних сил, действующих на систему.
Закон сохранения движения центра масс
[править | править код]В отсутствие внешних сил, а также при равенстве суммы всех внешних сил нулю, ускорение центра масс равно нулю, и, значит, его скорость постоянна. Таким образом, справедливо утверждение, составляющее содержание закона сохранения движения центра масс:
Если сумма внешних сил, действующих на систему, равна нулю, то центр масс такой системы движется с постоянной скоростью, т. е. равномерно и прямолинейно.
В частности, если первоначально центр масс покоился, то в указанных условиях он будет покоиться и в дальнейшем.
Из закона сохранения движения центра масс следует, что система отсчёта, связанная с центром масс замкнутой системы, является инерциальной. Использование таких систем отсчёта при изучении механических свойств замкнутых систем предпочтительно, поскольку таким образом исключается из рассмотрения равномерное и прямолинейное движение системы как целого.
Возможны случаи, когда сумма внешних сил нулю не равна, но равна нулю её проекция на какое-либо направление. В этом случае проекция ускорения центра масс на это направление также равна нулю и, соответственно, скорость центра масс вдоль этого направления не изменяется.
Значимость теоремы
[править | править код]Доказанная теорема расширяет и обосновывает возможности использования понятия материальная точка для описания движения тел. Действительно, если тело движется поступательно, то его движение полностью определяется движением центра масс, которое в свою очередь описывается полученным уравнением для . Таким образом, поступательно движущееся тело всегда возможно рассматривать как материальную точку с массой, равной массе тела, независимо от его геометрических размеров. Кроме того, тело можно рассматривать как материальную точку и во всех тех случаях, когда в силу условий задачи вращение тела интереса не представляет, а для определения положения тела достаточно знать положение его центра масс.
Практическая ценность теоремы состоит в том, что при решении задачи об определении характера движения центра масс она позволяет полностью исключить из рассмотрения все внутренние силы.
История
[править | править код]Закон сохранения движения центра масс сформулировал Исаак Ньютон в своём знаменитом труде «Математические начала натуральной философии», изданном в 1687 году. И. Ньютон писал: «Центр тяжести системы двух или нескольких тел от взаимодействия тел друг на друга не изменяет ни своего состояния покоя, ни движения; поэтому центр тяжести системы всех действующих друг на друга тел (при отсутствии внешних действий и препятствий) или находится в покое, или движется равномерно и прямолинейно»[4]. Далее он делал вывод: «Таким образом, поступательное количество движения отдельного ли тела или системы тел, надо всегда рассчитывать по движению центра тяжести их»[4].
См. также
[править | править код]Примечания
[править | править код]- ↑ 1 2 3 4 Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 273-280. — 416 с. — ISBN 5-06-003117-9.
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2005. — Т. I. Механика. — С. 115-116. — 560 с. — ISBN 5-9221-0225-7.
- ↑ 1 2 Тарг С. М. Центр инерции (центр масс) // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 624-625. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
- ↑ 1 2 Исаак Ньютон. Математические начала натуральной философии = Philosophia naturalis principia matematica / Перевод с латинского и примечания А. Н. Крылова. — М.: Наука, 1989. — С. 45-49. — 688 с. — (Классики науки). — ISBN 5-02-000747-1.