Сапог Шварца (Vghki Ofgjeg)

Перейти к навигации Перейти к поиску
Сапог Шварца () в Немецком техническом музее

Сапог Шварца (от нем. Schwarzscher Stiefel) — семейство приближений кругового цилиндра с помощью полиэдральных поверхностей.

Предельная площадь этих приближений может быть сделана произвольно большой. Эта конструкция позволяет увидеть несостоятельность определения площади поверхности как точной верхней грани площадей вписанных в неё полиэдральных поверхностей, в противоположность тому, что длина кривой может быть определена как точная верхняя грань длин вписанных в неё ломаных.

Конструкция была предложена в 1890 году Германом Шварцем как контрпример к ошибочному определению площади поверхности в книге Жозефа Серре[1]. Независимо от Шварца, тот же пример был найден Джузеппе Пеано. Его учитель Анджело Дженокки[итал.] также обсуждал этот вопрос со Шварцем. Дженокки проинформировал Шарля Эрмита, который использовал ошибочное определение Серре в своем курсе. После этого Эрмит пересмотрел свой курс и опубликовал заметку Шварца во втором издании своих лекций.[2]

Конструкция

[править | править код]

Высота цилиндра делится плоскостями, параллельными основаниям, на равных частей. В образовавшиеся сечения (окружности) вписываются правильные -угольники, причём соседние -угольники повёрнуты относительно друг друга на угол чтобы вершины вышележащего -угольника находились над серединами сторон нижележащего -угольника. Затем вершины -угольников соединяются так, что образуется поверхность из треугольников; каждый её «слой» — антипризма. Полученная многогранная поверхность называется сапогом Шварца.

Если , то размеры этих треугольников становятся сколь угодно малыми, то есть сапог Шварца стремится к цилиндру.

Сапог Шварца
  • Простой подсчёт показывает, что
    • при площадь, то есть сумма площадей всех треугольных граней сапога Шварца, стремится к бесконечности.
    • при площадь сапога Шварца, стремится к площади кругового цилиндра.
  • Относительно его внутренней метрики, сапог Шварца изометричен некоторому круговому цилиндру.

Примечания

[править | править код]
  1. J. A. Serret, Cours de calcul differentiel et integral (станица 296 первого издания и страница 298 второго)
  2. Schwarz, H. A., «Sur une définition erronée de l’aire d’une surface courbe», Gesammelte Mathematische Abhandlungen, 1 (1890), 309—311

Литература

[править | править код]
  • Дубровский В. Н. В поисках определения площади поверхности // Квант. — 1978. — № 5. — С. 31—34.
  • Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления. — М.: Мир, 1969. — Т. 3. (§ 623).