Радиоастрономия (Jg;nkgvmjkukbnx)
Радиоастроно́мия — раздел астрономии, изучающий космические объекты путём исследования их электромагнитного излучения в диапазоне радиоволн. Объектами излучения являются практически все космические тела и их комплексы (от тел Солнечной системы до Метагалактики), а также вещество и поля, заполняющие космическое пространство (межпланетная среда, межзвёздный газ, межзвёздная пыль и магнитные поля, космические лучи, реликтовое излучение и т. п.) . Метод исследования — регистрация космического радиоизлучения с помощью радиотелескопов[1].
История радиоастрономии
[править | править код]Ещё в конце XIX века учёные предполагали, что радиоволны, отличающиеся от видимого света только частотой, также должны излучаться небесными телами, в частности Солнцем[2].
Радиоастрономия как наука берёт своё начало с экспериментов Карла Янского, проведённых в 1931 году[3]. В декабре 1932 года Янский сообщает об открытии радиоизлучения космического происхождения, что было надёжно установлено в течение следующих нескольких лет[4][5]. Первым был обнаружен самый сильный радиоисточник непрерывного излучения — в центре Млечного Пути[6]. В 1937 году Гроут Ребер, вдохновлённый открытием Янского, построил первый параболический радиотелескоп диаметром 9,5 метров[3]. Первые радиокарты небосвода были получены Ребером, и опубликованы в 1944 году в своей работе[7]; на картах отчётливо видны центральные области Млечного Пути и яркие радиоисточники в созвездии Стрельца, Лебедя A, Кассиопеи A, Большого Пса и Кормы. После Второй мировой войны были сделаны существенные технологические улучшения учёными в Европе, Австралии и США, что способствовало бурному развитию современной радиоастрономии.
Метеорная радиоастрономия Метеорная радиоастрономия
-
Точная копия радиотелескопа Карла Янского
-
Первая запись радиоизлучения Млечного Пути
-
Точная копия радиотелескопа Гроута Ребера
-
Первая радиокарта небосвода
Инструменты
[править | править код]Радиотелескопы
[править | править код]Радиотелеско́п — астрономический инструмент для приёма собственного радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования их характеристик, таких как: координаты, пространственная структура, интенсивность излучения, спектр и поляризация[8].
Радиотелескоп занимает начальное, по диапазону частот, положение среди астрономических инструментов исследующих электромагнитное излучение, — более высокочастотными являются телескопы теплового, видимого, ультрафиолетового, рентгеновского и гамма излучения[9].
Радиоинтерферометры
[править | править код]Радиоинтерферометр — инструмент для радиоастрономических наблюдений с высоким угловым разрешением, который состоит, как минимум, из двух антенн, разнесённых на расстоянии и связанных между собой кабельной линией связи[10][11]. Радиоинтерферометры используются для измерения тонких угловых деталей в радиоизлучении неба[12]. В частности, с их помощью получают особо точные координаты и угловые размеры астрономических объектов, а также радиоизображения небесных тел с высоким разрешением[13].
Радиоинтерферометры со сверхдлинными базами
[править | править код]Радиоинтерферометрия со сверхдлинными базами (РСДБ, англ. Very Long Baseline Interferometry, VLBI) — вид интерферометрии, используемый в радиоастрономии, при котором приёмные элементы интерферометра (телескопы) располагаются не ближе, чем на континентальных расстояниях друг от друга. При этом управление элементами РСДБ интерферометра производится независимо, без непосредственной коммутационной линии связи, в отличие от обычного радиоинтерферометра. Запись данных осуществляется на носители информации с последующей корреляционной обработкой на специализированном вычислительном оборудовании — корреляторе[14].
Астрономические источники
[править | править код]Радиоастрономия привела к значительному развитию астрономии, особенно с открытием нескольких новых классов объектов, включая пульсары, квазары и радиогалактики. Всё это благодаря тому, что радиоастрономия позволяет увидеть то, что невозможно обнаружить с помощью оптической астрономии. Такие объекты представляют собой самые далёкие и мощные физические явления во вселенной.
Реликтовое излучение также было впервые обнаружено с помощью радиотелескопов. Кроме того, радиотелескопы использовались и для исследования ближайших к Земле астрономических объектов, включая наблюдения Солнца и солнечной активности, и радарное картографирование планет солнечной системы.
См. также
[править | править код]Примечания
[править | править код]- ↑ Курильчик, 1986, с. 533.
- ↑ Каплан С. А. Как возникла радиоастрономия // Элементарная радиоастрономия. — М.: Наука, 1966. — С. 12. — 276 с. (Дата обращения: 28 сентября 2011)
- ↑ 1 2 Краус Д. Д. 1.2. Краткая история первых лет радиоастрономии // Радиоастрономия / Под ред. В. В. Железнякова. — М.: Советское радио, 1973. — С. 14—21. — 456 с. Архивировано 1 марта 2012 года. Архивированная копия . Дата обращения: 12 августа 2011. Архивировано из оригинала 1 марта 2012 года. (Дата обращения: 12 августа 2011)
- ↑ Jansky K. G. Directional Studies of Atmospherics at Hight Frequencies. — Proc. IRE, 1932. — Т. 20. — С. 1920—1932. (Дата обращения: 12 августа 2011)
- ↑ Jansky K. G. Electrical disturbances apparently of extraterrestrial origin (англ.) = Электрические помехи, вероятно, внеземного происхождения. — Proc. IRE, 1933. — Vol. 21. — P. 1387—1398. (Дата обращения: 12 августа 2011)
- ↑ Jansky K. G. A note on the source of interstellar interference. — Proc. IRE, 1935. — Т. 23. — С. 1158—1163. (Дата обращения: 12 августа 2011)
- ↑ Reber G. Cosmic Static. — Astrophys. J., November, 1944. — Т. 100. — С. 279—287. (Дата обращения: 7 сентября 2011)
- ↑ Радиотелескоп // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
- ↑ Электромагнитное излучение
- ↑ Радиоинтерферометр в Большая советская энциклопедия (1978, 3-е издание)
- ↑ Радиоинтерферометр / Матвеенко Л. И. // Физика космоса: Маленькая энциклопедия : [арх. 16 ноября 2017] / Редкол.: Р. А. Сюняев (Гл. ред.) и др. — 2-е изд. — М. : Советская энциклопедия, 1986. — С. 547—551. — 783 с. — 70 000 экз. (Дата обращения: 16 ноября 2011)
- ↑ Томпсон и др., 2003, с. 11.
- ↑ Конникова В. К., Лехт Е. Е., Силантьев Н. А. 6.4. Интерферометры // Практическая радиоастрономия / М. Г. Мингалиев, М. Г. Ларионов. — М.: МГУ, 2011. — С. 241. — 304 с. (Дата обращения: 29 ноября 2011)
- ↑ Томпсон и др., 2003, с. 276.
Литература
[править | править код]- Радиоастрономия / Курильчик В. Н. // Физика космоса: Маленькая энциклопедия / Редкол.: Р. А. Сюняев (Гл. ред.) и др. — 2-е изд. — М. : Советская энциклопедия, 1986. — С. 533—541. — 783 с. — 70 000 экз.
- Томпсон А. Р., Моран Д. М., Свенсон Д. У. Интерферометрия и синтез в радиоастрономии = Interferometry and synthesis in radio astronomy / Пер. с англ. под ред. Л. И. Матвеенко. — 2-е изд. — М.: ФИЗМАТЛИТ, 2003. — 624 с. — ISBN 5-9221-0015-7.
Ссылки
[править | править код]- Г. М. Рудницкий. Конспект лекций по курсу «Радиоастрономия»
- А. Левин. Слушая Вселенную // Популярная механика. — 2009. — Вып. 8.