Принцип Фрагмена — Линделёфа (Hjnuenh Sjgibyug — Lnu;yl~sg)

Перейти к навигации Перейти к поиску

Для аналитических функций справедлив так называемый принцип максимума модуля, который предписывает четкое расположение максимума модуля для аналитической в некоторой ограниченной области функции исключительно на границе этой области. В общем случае для неограниченных областей такое предположение неверно. Однако при наложении на функцию некоторых дополнительных ограничений можно показать, что функция будет ограничена по модулю и в неограниченной области.

Принцип Фрагмена — Линделёфа для неограниченного сектора

[править | править код]

Пусть функция аналитична в секторе и непрерывна на его границе. Тогда, если на границе этого сектора справедливо неравенство и существуют постоянные такие, что во всем секторе выполняется неравенство , тогда неравенство справедливо во всем секторе.

Принцип Фрагмена — Линделёфа для вертикальной полуполосы

[править | править код]

Пусть — бесконечная вертикальная полуполоса, далее, пускай существуют постоянные такие, что на границе полосы выполнено неравенство , а в самой полосе выполняется неравенство . Тогда выполнено во всей полосе.