Принцип максимума модуля (Hjnuenh bgtvnbrbg bk;rlx)

Перейти к навигации Перейти к поиску

Принцип максимума модуля выражается следующей теоремой:

Если голоморфна в некоторой области и существует точка такая, что во всей области выполняется неравенство , то .

Другими словами, модуль аналитической функции, отличной от константы, не может иметь локальных максимумов внутри области .

Следствия[править | править код]

  • Принцип минимума модуля. Если аналитична в некоторой области , не обращается там в нуль, и существует точка такая, что во всей области выполняется неравенство , то . (То есть локальные минимумы модуля аналитической функции, отличной от константы, могут достигаться только в тех точках, где она обращается в ноль.)
  • Принцип максимума вещественной и мнимой части. Если для аналитической функции в точке достигается локальный максимум (минимум) у её вещественной (или мнимой) части, тогда функция есть константа.

(Здесь используется обычный принцип максимума модуля для функций и , а также равенство .)

  • Пусть  — компактное подмножество. Для всякой функции , непрерывной на и аналитичной внутри , выполнено равенство:

Если последовательность таких функций равномерно сходится на границе компакта , тогда она сходится равномерно на всём .

Примечания[править | править код]

  1. Шабат Б. В. Введение в комплексный анализ. — М.: Наука, 1969. — С. 192. — 577 с.

Литература[править | править код]

  • А. В. Домрин, А. Г. Сергеев. Часть II : Второе полугодие // Лекции по комплексному анализу. — Москва : МИАН, 2004. — С. 181. — ISBN 5-98419-006-0.