Отображение Гаусса (KmkQjg'yuny Igrvvg)
Перейти к навигации
Перейти к поиску
Отображение Гаусса (гауссово отображение, сферическое отображение) — отображение из гладкой поверхности в трёхмерном евклидовом пространстве в единичную сферу, при котором точка поверхности отображается в вектор единичной нормали в этой точке. Названо в честь Карла Фридриха Гаусса.
Свойства
[править | править код]- Якобиан отображения Гаусса равен гауссовой кривизне поверхности в данной точке.
Вариации и обобщения
[править | править код]- Отображение Гаусса естественно обобщается на случай гиперповерхности в евклидовом пространстве произвольной размерности.
- Для подмногообразия евклидова пространства произвольной размерности и коразмерности естественным аналогом отображения Гаусса является отображение, сопоставляющее точке подмногообразия точку грассманиана, соответствующую касательному пространству в этой точке.
Литература
[править | править код]- Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко. Современная геометрия. — Любое издание.
- П. К. Рашевский. Риманова геометрия и тензорный анализ. — Любое издание.
- Д. Гильберт, С. Кон-Фоссен. Наглядная геометрия. — Любое издание.
- Топоногов В. А. Дифференциальная геометрия кривых и поверхностей. — Физматкнига, 2012. — ISBN 9785891552135.