Нуль функции (Url, srutenn)

Перейти к навигации Перейти к поиску
Нули косинуса на интервале [-2π,2π] (красные точки)

Нуль функции в математике — элемент из области определения функции, в котором она принимает нулевое значение. Например, для функции , заданной формулой

является нулём, поскольку

.

Понятие нулей функции можно рассматривать для любых функций, область значений которых содержит нуль или нулевой элемент соответствующей алгебраической структуры.

Для функции действительного переменного нулями являются значения, в которых график функции пересекает ось абсцисс.

Нахождение нулей функции часто требует использования численных методов (к примеру, метод Ньютона, градиентные методы).

Одной из нерешённых математических проблем является нахождение нулей дзета-функции Римана.

Корень многочлена

[править | править код]

Основная теорема алгебры

[править | править код]

Основная теорема алгебры утверждает, что каждый многочлен степени n имеет n комплексных корней, с учётом их кратности. У кубического уравнения, как показано выше, всегда три комплексных корня, с учётом кратности. Все мнимые корни многочлена, если они есть, всегда входят сопряжёнными парами, только если все коэффициенты многочлена вещественны. Каждый многочлен нечётной степени с вещественными коэффициентами имеет по крайней мере один действительный корень. Связь между корнями многочлена и его коэффициентами устанавливает теорема Виета.

Комплексный анализ

[править | править код]

Простой нуль голоморфной в некоторой области функции — точка , в некоторой окрестности которой справедливо представление , где голоморфна в и не обращается в этой точке в нуль.

Нуль порядка голоморфной в некоторой области функции — точка , в некоторой окрестности которой справедливо представление , где голоморфна в и не обращается в этой точке в нуль.

Нули голоморфной функции изолированы.

Другие специфические свойства нулей комплексных функций выражаются в различных теоремах:

Литература

[править | править код]