Метод бисопряжённых градиентов (Bymk; Qnvkhjx'~uud] ijg;nyumkf)

Перейти к навигации Перейти к поиску

Метод бисопряжённых градиентов (англ. Biconjugate gradient method, BiCG) — итерационный численный метод решения СЛАУ крыловского типа. Является обобщением метода сопряжённых градиентов.

Постановка задачи

[править | править код]

Пусть дана система линейных алгебраических уравнений вида: . В отличие от МСГ на матрицу не накладывается условие самосопряжённости, то есть возможно, что . Для действительной матрицы это означает, что матрица может быть несимметричной.

Алгоритм для действительных матриц

[править | править код]
Подготовка перед итерационным процессом
  1. Выберем начальное приближение
-я итерация метода[1]
Критерий остановки итерационного процесса

Остановка может происходить по числу итераций, по невязке, по отличию приближений и так далее. Поскольку метод является неустойчивым, то при его использовании дополнительно следует ограничивать сверху число итераций.

Алгоритм для предобусловленной системы

[править | править код]

Пусть дана предобусловленная система

Подготовка перед итерационным процессом
  1. Выберем начальное приближение
-я итерация метода
  1. [2]
После итерационного процесса
  1. , где  — приближенное решение системы,  — решение предобусловленной системы на последней итерации.
Критерий остановки итерационного процесса

Остановка может происходить по числу итераций, по невязке, по отличию приближений и так далее. Поскольку метод является неустойчивым, то при его использовании дополнительно следует ограничивать сверху число итераций.

Особенности и модификации метода

[править | править код]

BiCG является неустойчивым[1] методом, поэтому для решения реальных задач его используют редко. Чаще используют его модификацию[3] — стабилизированный метод бисопряжённых градиентов.

Примечания

[править | править код]
  1. 1 2 Henk A. van der Vorst. Iterative Krylov Methods for Large Linear System. — Cambridge University Press, 2003. — 221 с. — ISBN 9780521818285.
  2. T. Huttunen, M. Malinen, P. Monk. Solving Maxwell’s Equations using Ultra Weak Variational Formulation (англ.). — 2006.