Гармоническая волна (Igjbkuncyvtgx fklug)

Перейти к навигации Перейти к поиску

Гармоническая волна — волна, при которой каждая точка колеблющейся среды или поле в каждой точке пространства совершает гармонические колебания.

В разных случаях при необходимости особо выделяется интересующий класс гармонических волн, например, плоская гармоническая волна, стоячая гармоническая волна и т. д. (см. ниже).[1]

Источниками гармонических волн могут быть гармонические колебания, они также могут возбуждаться в какой-либо системе при взаимодействии её с гармонической волной.

Одномерный случай

[править | править код]

Случай одномерного однородного пространства (или одномерной однородной среды)[2] — наиболее прост.

В этом случае все виды гармонических волн сводятся к:

  • синусоидальным (косинусоидальным) бегущим волнам:
  • или бегущим волнам виде мнимой экспоненты:

а также к конечным линейным комбинациям волн такого вида (для выражения произвольной действительной гармонической волн в этом случае достаточно смешать две волны первого вида или четыре второго; в случае более многомерного u добавляется по два таких слагаемых на каждую поляризацию).

  • Может быть также использовано понятие гармонической стоячей волны, сводящейся к сумме двух гармонических бегущих (бегущих в противоположных направлениях) волн, описанных выше:

Здесь A — постоянный (не зависящий от x и t) коэффициент, природа и размерность которого совпадает с природой и размерностью поля u; k, ω и φ0 — также постоянные параметры, в рассматриваемом одномерном случае все они — действительные числа (в отличие от более многомерных, где k становится векторным — для плоских волн). A — есть амплитуда волны, k — волновое число, ω — (циклическая) частота и φ0 — начальная фаза — то есть фаза волны при x = t = 0.

Во второй формуле A — (обычно) комплексное, амплитуду волны определяет его модуль |A|, а начальная фаза спрятана также в A в качестве его аргумента, поскольку

Так же, как стоячая волна выражается (как записано здесь) через две бегущих, так же и бегущая может быть выражена через две стоячих. Поэтому можно выбрать один из двух равноправных способов выражения произвольной гармонической волны в случае одномерного однородного пространства: через линейную комбинацию бегущих или линейную комбинацию стоячих волн. Это верно и для всех других случаев, хотя базисные волны, через линейную комбинацию которых выражается произвольная гармоническая волна, могут оказаться сложнее.

  • случай неоднородного одномерного пространства (неоднородной среды) оказывается значительно сложнее. В этом случае зависимость гармонических волн от пространственной координаты x становится не синусоидальной, а в общем — и наиболее типичном — случае и вовсе не выражается через элементарные функции. Тем не менее, и в этом случае остается верным утверждение о возможности выразить произвольную гармоническую волну через конечное (для определенной частоты) количество базисных гармонических волн.

Случаи пространства размерностью больше единицы

[править | править код]

В случаях пространства размерностью больше единицы, даже если оно однородно, в принципе разнообразие возможных гармонических волн очень сильно возрастает. Однако есть два типа гармонических волн, которым следует уделить главное отдельное внимание.

Плоские гармонические волны

[править | править код]

Наиболее важным и часто встречающимся типом гармонических волн являются плоские гармонические волны (одномерные гармонические волны являются их одномерным частным случаем).

  • Бегущая плоская волна — это волна такого вида:

или

где, в отличие от одномерной волны  — уже не действительное число, а вектор, называемый волновым вектором, размерность которого равна размерности пространства, а выражение означает скалярное произведения этого вектора с вектором[3] , характеризующим точку пространства: .

Легко видеть, что если выбрать ось координат вдоль волнового вектора, плоская многомерная волна сводится к одномерной (u вообще перестает зависеть от остальных координат, а от первой — зависит как одномерная гармоническая волна).

  • Стоячая плоская волна:

Так же, как и в одномерном случае, стоячие и бегущие гармонические волны одной частоты с одинаковым (быть может, с точностью до знака) волновым вектором, элементарно линейно выражаются друг через друга.

Поскольку с помощью преобразования Фурье (в текущем параграфе подразумевается, конечно, многомерное преобразование Фурье) практически любую[4] функцию пространственных координат можно представить как сумму (интеграл) функций, представляющих каждая плоскую волну, а зависимость от времени в тогда для случая однородного пространства будет тоже очевидно гармонической, то очевидно удобство разложения любой гармонической (да и не только гармонической) волны по плоским гармоническим волнам. В каких-то случаях и в какой-то мере это может быть полезным и в случаях неоднородности пространства, хотя в этом случае это вполне может и не дать ожидаемых преимуществ, или извлечение этих преимуществ может потребовать особого искусства.

Сферические гармонические волны

[править | править код]

Сферические гармонические волны несколько менее универсальны и просты (их гораздо труднее даже выписать в явном виде, если не выражать просто через бесконечные суммы/интегралы плоских волн; например, для двумерного пространства гармонические сферические волны выражаются через функции Бесселя, то есть не выражаются через элементарные функции).

Тем не менее они бывают очень полезны, когда сами условия задачи склоняют к попытке рассмотрения сферических волн, то есть, в особенности при исследовании волн, порождаемых точечным источником или когда задача в целом имеет сферическую симметрию (последнее лучше всего для попытки искать решение просто в виде только сферических волн).

Для трехмерного однородного пространства гармонические сферические волны имеют вид:

  • бегущие:

или

  • стоячие:

или (в виде, удобном в качестве для разложения):

Значение и теоретическое применение

[править | править код]

Общий линейный случай

[править | править код]

Любое линейное дифференциальное уравнение вида

где порядок дифференцирования по времени n может быть любым (чаще интересны n = 1 или 2), а L любой линейный дифференциальный оператор, не зависящий от t (правда, если u должно быть действительным одномерным, а L -эрмитов, то нечетные n придется исключить), будет иметь решением гармоническую волну.

Действительно, подставим , где x — точка пространства любой размерности. Получаем тогда:

а экспонента сокращается. Сделав такую же подстановку с , получим, при оговоренных выше условиях подходящего K, получить и действительное v как сумму этих двух решений.


Примечания

[править | править код]
  1. Слово 'гармоническая' тут является синонимом слова 'монохроматическая', однако, по-видимому, не совсем точным; во всяком случае, обычные области применения того и другого термина обычно несколько различаются.
  2. Так же, конечно, как и сводящиеся к нему многомерные случаи
  3. Многоточие означает, что количество координат, определяющих вектор равно размерности пространства; если эта размерность равна 2, то количество компонент вектора, естественно, также должно быть усечено до 2.
  4. Математические условия, накладываемые на класс функций, для которых возможно преобразование Фурье и для которых обратное преобразование восстанавливает исходную функцию, можно считать удовлетворенными для любой функции, интересной сточки зрения физики волн, а случаи, когда то не совсем так, как правило, не очень важны с принципиальной точки зрения, во-вторых же достаточно успешно исправляются достаточно простой регуляризацией.