Элементарный электрический заряд (|lybyumgjudw zlytmjncyvtnw [gjx;)

Перейти к навигации Перейти к поиску

Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда, наблюдающегося в природе у свободных долгоживущих частиц. Согласно изменениям определений основных единиц СИ равен точно 1,602 176 634⋅10−19 Кл[1] в Международной системе единиц (СИ)[2]. Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие[3].

Квантование электрического заряда

[править | править код]

Любой наблюдаемый в эксперименте электрический заряд всегда кратен одному элементарному — такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые элементарный заряд был экспериментально измерен Милликеном в 1910 году[3].

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.

  • Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с электрическим зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что существование всего одного магнитного монополя влечёт за собой квантование всех электрических зарядов во Вселенной. Однако обнаружить в природе магнитный монополь не удалось.
  • В современной физике элементарных частиц разрабатываются модели наподобие преонной, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».
  • Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени (скажем, топологическим). Такой подход развивается, например, в модели С. Бильсона-Томпсона[4], в которой фермионы Стандартной модели интерпретируются, как три ленты пространства-времени, заплетённые в косу (брэд), а электрический заряд (точнее, треть от него) соответствует перекрученной на 180° ленте. Однако несмотря на изящество таких моделей, конкретных общепринятых результатов в этом направлении пока не получено.

Дробный электрический заряд

[править | править код]

С открытием кварков стало понятно, что элементарные частицы могут обладать дробным электрическим зарядом, например, ±⅓ и ±⅔ элементарного. Однако подобные частицы существуют только в связанных состояниях (конфайнмент), таким образом, почти все известные свободные частицы (и все стабильные и долгоживущие) имеют электрический заряд, кратный элементарному, хотя рассеяние на частицах с дробным зарядом наблюдалось.

Исключением является t-кварк, его время жизни (~5·10⁻²⁵ с) настолько мало́, что он распадается раньше, чем успевает подвергнуться адронизации, и поэтому встречается только в свободном виде. Заряд t-кварка по прямым измерениям равен +⅔𝑒[5].

Неоднократные поиски долгоживущих свободных объектов с дробным электрическим зарядом, проводимые различными методиками в течение длительного времени, не дали результата.

Стоит, однако, отметить, что электрический заряд квазичастиц также может быть не кратен целому. В частности, именно квазичастицы с дробным электрическим зарядом отвечают за дробный квантовый эффект Холла.

Экспериментальное определение элементарного электрического заряда

[править | править код]

Число Авогадро и постоянная Фарадея

[править | править код]

Если известны число Авогадро 𝑁A и постоянная Фарадея 𝐹, величину элементарного электрического заряда можно вычислить, используя формулу

(другими словами, заряд одного моля электронов, делённый на число электронов в моле, равен заряду одного электрона.)

По сравнению с другими, более точными методами, этот метод не даёт высокой точности, но всё-таки точность его достаточно высока. Ниже приводятся подробности этого метода.

Значение постоянной Авогадро 𝑁A было впервые приблизительно измерено Иоганном Йозефом Лошмидтом, который в 1865 году определил на газокинетической основе размер молекул воздуха, что эквивалентно расчёту числа частиц в заданном объёме газа[6]. Сегодня значение 𝑁A может быть определено с очень высокой точностью с использованием очень чистых кристаллов (как правило — кристаллов кремния) путём измерения расстояния между атомами с использованием дифракции рентгеновских лучей; или другим способом, с точным измерением плотности кристалла. Отсюда можно найти массу (𝑚) одного атома, а так как молярная масса (𝑀) известна, число атомов в моле может быть рассчитано так: 𝑁A = 𝑀/𝑚.

Величина 𝐹 может быть измерена непосредственно с помощью законов электролиза Фарадея. Законы электролиза Фарадея определяют количественные соотношения, основанные на электрохимических исследованиях, опубликованных Майклом Фарадеем в 1834 году[7]. В эксперименте электролиза существует взаимно-однозначное соответствие между количеством электронов проходящих между анодом и катодом, и количеством ионов, осевших на пластине электрода. Измеряя изменения массы анода и катода, а также общий заряд, проходящий через электролит (который может быть измерен как интеграл по времени от электрического тока), а также учитывая молярную массу ионов, можно вывести 𝐹.

Ограничения на точность метода заключается в измерении 𝐹. Лучшие экспериментальное значения имеют относительную погрешность 1,6 промилле, что примерно в тридцать раз больше, чем в других современных методах измерения и расчёта элементарного заряда.

Опыт Милликена

[править | править код]

Известный опыт по измерению заряда электрона e. Маленькая капля масла в электрическом поле будет двигаться с такой скоростью, что будут скомпенсированы сила тяжести, сила Стокса (производная от вязкости воздуха) и электрическая сила. Сила тяжести и Стокса могут быть рассчитаны исходя из размера и скорости падения капли в отсутствие электрического поля, откуда может быть определена и электрическая сила, действующая на каплю. Поскольку электрическая сила, в свою очередь, пропорциональна произведению электрического заряда и известной, заданной в эксперименте, напряжённости электрического поля, электрический заряд капли масла может быть точно вычислен. В этих опытах измеренные заряды различных капель масла оказались всегда целыми кратными одной небольшой величины, а именно e.

Дробовой шум

[править | править код]

Любой электрический ток сопровождается электронным шумом от различных источников, одним из которых является дробовой шум. Существование дробового шума связано с тем, что ток является не непрерывным, а состоит из дискретных электронов, которые поочерёдно поступают на электрод. Путём тщательного анализа шума тока может быть вычислен заряд электрона. Этот метод, впервые предложенный Вальтером Шоттки, может давать значение е с точностью до нескольких процентов[8]. Тем не менее, он был использован в первом прямом наблюдении Лафлином квазичастиц, причастных к дробному квантовому эффекту Холла[9].

Эффект Джозефсона и константа фон Клитцинга

[править | править код]

Другим точным методом измерения элементарного заряда является вычисление его из наблюдения двух эффектов квантовой механики: эффекта Джозефсона, при котором возникают колебания напряжения в определённой сверхпроводящей структуре и квантового эффекта Холла, эффекта квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Постоянная Джозефсона

где h — постоянная Планка, может быть измерена непосредственно с помощью эффекта Джозефсона.

Постоянная фон Клитцинга

может быть измерена непосредственно с помощью квантового эффекта Холла.

Из этих двух констант может быть вычислена величина элементарного заряда:

Примечания

[править | править код]
  1. Elementary charge (англ.). The NIST Reference on Constants, Units, and Uncertainty. US National Institute of Standards and Technology. Дата обращения: 20 мая 2020. Архивировано 24 апреля 2015 года.
  2. В системе СГСЭ элементарный заряд равен точно 4,803 204 712 570 263 72⋅10−10 Фр. Значение в единицах СГСЭ приведено как результат пересчёта значения CODATA в кулонах с учётом того факта, что кулон точно равен 2 997 924 580 единицам электрического заряда СГСЭ (франклинам или статкулонам).
  3. 1 2 Томилин К. А. Фундаментальные физические постоянные в историческом и методологическом аспектах. — М.: Физматлит, 2006. — С. 96—105. — 368 с. — 400 экз. — ISBN 5-9221-0728-3.
  4. A topological model of composite preons Архивная копия от 9 ноября 2018 на Wayback Machine es.arXiv.org
  5. Abazov V. M. et al. (DØ Collaboration). Experimental discrimination between charge 2𝑒/3 top quark and charge 4𝑒/3 exotic quark production scenarios (англ.) // Physical Review Letters : journal. — 2007. — Vol. 98, no. 4. — P. 041801. — doi:10.1103/PhysRevLett.98.041801. — Bibcode2007PhRvL..98d1801A. — arXiv:hep-ex/0608044. — PMID 17358756.
  6. Loschmidt J. Zur Grösse der Luftmoleküle (нем.) // Sitzungsberichte der kaiserlichen Akademie der Wissenschaften Wien. — 1865. — Bd. 52, Nr. 2. — S. 395—413. English translation Архивировано 7 февраля 2006 года..
  7. Ehl R. G., Ihde A. Faraday's Electrochemical Laws and the Determination of Equivalent Weights (англ.) // Journal of Chemical Education[англ.] : journal. — 1954. — Vol. 31, no. May. — P. 226—232. — doi:10.1021/ed031p226. — Bibcode1954JChEd..31..226E.
  8. Beenakker C., Schönenberger C. Quantum Shot Noise (англ.) // Physics Today. — 2003. — May (vol. 56, no. 5). — P. 37—42. — doi:10.1063/1.1583532. — arXiv:cond-mat/0605025. [исправить]
  9. de-Picciotto R. et al. Direct observation of a fractional charge (англ.) // Nature. — 1997. — Vol. 389, no. 162—164. — P. 162. — doi:10.1038/38241. — Bibcode1997Natur.389..162D..