Число Вудала (Cnvlk Fr;glg)
В теории чисел число Вудала (Wn) — любое натуральное число вида
для некоторого натурального n. Несколько первых чисел Вудала:
Числа Вудала были впервые изучены Алланом Дж. Каннингемом[англ.] и Г. Дж. Вудалом[англ.] в 1917, воодушевлённые более ранними исследованиями Джеймса Каллена[англ.] подобным образом определённых чисел Каллена. Числа Вудала странным образом проявились в теореме Гудстейна.
Числа Вудала, являющиеся простыми числами, называются простыми числами Вудала. Несколько первых экспонент n, для которых соответствующие числа Вудала Wn простые:
Сами же простые числа Вудала образуют последовательность:
В 1976 году Христофер Хулей (англ. Christopher Hooley) показал, что почти все числа Каллена составные. Доказательство Кристофера Хулей было переработано математиком Хирми Суяма чтобы показать, что оно верно для любой последовательности чисел , где a и b целые числа, и частично также для чисел Вудала. Предполагают, что существует бесконечно много простых чисел Вудала. По состоянию на октябрь 2018 года наибольшее известное простое число Вудала — .[1] Оно имеет 5122515 цифр и было найдено Диего Бертолотти (Diego Bertolotti) в 2018 в проекте распределённых вычислений PrimeGrid[2].
Подобно числам Каллена, числа Вудала имеют много свойств делимости. Например, если p простое число, то p делит
- , если символ Якоби равен +1 и
- , если символ Якоби равен −1.
Обобщённое число Вудала определяется как число вида , где n + 2 > b. Если простое число можно записать в таком виде, его называют обобщённым простым числом Вудала.
См. также
[править | править код]- Простые числа Мерсенна — простые числа вида 2n − 1.
Примечания
[править | править код]- ↑ The Prime Database: 8508301*2^17016603-1 Архивная копия от 9 ноября 2019 на Wayback Machine, Chris Caldwell's The Largest Known Primes Database
- ↑ PrimeGrid, Announcement of 17016602*2^17016602 - 1 . Дата обращения: 9 ноября 2019. Архивировано 16 июля 2019 года.
Литература
[править | править код]- Guy, Richard K. (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. section B20, ISBN 0-387-20860-7.
- Keller, Wilfrid (1995), "New Cullen Primes" (PDF), Mathematics of Computation, 64 (212): 1733—1741.
- Caldwell, Chris, "The Top Twenty: Woodall Primes", The Prime Pages, Дата обращения: 29 декабря 2007.
Ссылки
[править | править код]- Chris Caldwell, The Prime Glossary: Woodall number at The Prime Pages.
- Weisstein, Eric W. Woodall number (англ.) на сайте Wolfram MathWorld.
- Steven Harvey, List of Generalized Woodall primes.
- Paul Leyland, Generalized Cullen and Woodall Numbers
Для улучшения этой статьи желательно:
|