Теория Янга — Миллса с четырьмя суперсимметриями (Mykjnx Xuig — Bnllvg v cymdj,bx vrhyjvnbbymjnxbn)
теория Янга — Миллса с четырьмя суперсимметриями (также (N = 4)-теория Янга — Миллса) — математическая и физическая модель, созданная для изучения частиц с помощью простой системы, подобной теории струн, с конформной симметрией. Это упрощённая игрушечная теория, основанная на теории Янга — Миллса, которая не описывает реальный мир, но полезна, поскольку она может служить испытательным полигоном для подходов к решению проблем в более сложных теориях[1]. Она описывает вселенную, содержащую бозонные поля и фермионные поля, связанные 4 суперсимметриями (это означает, что обмен бозонными, фермионными и скалярными полями определённым образом оставляет предсказания теории инвариантными). Это одна из самых простых (потому что она не имеет свободных параметров, кроме калибровочной группы) и одна из немногих конечных квантовых теорий поля в четырёх измерениях. Её можно считать самой симметричной теорией поля, которая не связана с гравитацией.
Лагранжиан
[править | править код]Лагранжиан для теории[2]
где и индексы i, j = 1, …, 6, а также a, b = 1, …, 4. представляет структурные константы определённой калибровочной группы. представляет структурные константы группы R-симметрии SU(4), которая вращает 4 суперсимметрии. Как следствие теорем о неперенормировке, эта суперсимметричная теория поля фактически является суперконформной теорией поля .
Десятимерный лагранжиан
[править | править код]Вышеуказанный лагранжиан можно найти, начав с более простого десятимерного лагранжиана
где I и J пробегают значения от 0 до 9 и являются 32 на 32 гамма-матрицами с последующим добавлением члена с который является топологическим членом.
Компоненты калибровочного поля для i от 4 до 9 становятся скалярами после устранения лишних измерений. Это также даёт интерпретацию SO(6) R-симметрии как поворотов в сверхкомпактных измерениях.
Путём компактификации на Т6 все суперзаряды сохраняются, давая N = 4 в 4-мерной теории.
Интерпретация теории струн типа IIB — это мировая теория стека D3-бран.
S-дуальность
[править | править код]Константы связи и естественно спариваются в форме:
Теория имеет симметрию, которая сдвигает по целым числам. Гипотеза S-дуальности говорит, что есть также симметрия, которая посылает : а также переключает группу к её двойственной группе Ленглендса .
AdS/CFT-соответствие
[править | править код]Эта теория важна и в контексте голографического принципа. Существует двойственность между теорией струн типа IIB в пространстве AdS5 × S5 (произведение 5-мерного пространства AdS с 5-мерной сферой) и N = 4 суперсимметричной теорией Янга — Миллса на 4-мерной границе AdS5. Однако эта конкретная реализация AdS/CFT-соответствия не является реалистичной моделью гравитации, поскольку гравитация в нашей вселенной является 4-мерной. Несмотря на это, AdS/CFT-соответствие является наиболее успешной реализацией голографического принципа, спекулятивной идеи о квантовой гравитации, первоначально предложенной Герардом 'т Хоофтом, которая расширяла работу по термодинамике чёрных дыр, и была улучшена и продвинута в контексте теории струн Леонардом Сасскиндом .
Интегрируемость
[править | править код]Существует доказательство того, что N = 4 суперсимметричная теория Янга — Миллса имеет интегрируемую структуру в плоском пределе больших N[3]. Поскольку количество цветов (также обозначаемое N) становится бесконечным, амплитуды масштабируются как , так что выживает только вклад рода 0 (планарный граф). Планарная теория Янга — Миллса — это теория с очень большим (бесконечным) количеством цветов.
Планарный предел — это предел, в котором амплитуды рассеяния преобладают на диаграммах Фейнмана, которым можно придать структуру планарных графов[4].
Beisert и соавт. дали обзорную статью, демонстрирующую, как в этой ситуации локальные операторы могут быть выражены через определённые состояния в «спиновых» цепочках, но на основе больших супералгебр Ли, а не SU(2) для обычного спина. Они поддаются техникам подстановки Бете. Они также строят действие ассоциированного янгиана на амплитуды рассеяния[5].
Нима Аркани-Хамед и соавт. также исследовали эту тему. Используя теорию твисторов, они находят описание (формализм амплитуэдра) в терминах позитивного грассманиана[6].
Отношение к 11-мерной М-теории
[править | править код]N = 4 суперсимметричная теория Янга — Миллса может быть получена из более простой 10-мерной теории, и всё же супергравитация и М-теория существуют в 11 измерениях. Связь заключается в том, что если калибровочная группа U(N) SYM становится бесконечной как , она становится эквивалентной 11-мерной теории, известной как матричная теория.
См. также
[править | править код]Примечания
[править | править код]- ↑ Matt von Hippel. Earning a PhD by studying a theory that we know is wrong . Ars Technica (21 мая 2013).
- ↑ Luke Wassink. N = 4 Super Yang–Mills theory . Дата обращения: 22 мая 2013. Архивировано 31 мая 2014 года.
- ↑ Martin Ammon, Johanna Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2015, p. 240.
- ↑ planar limit in nLab
- ↑ Beisert, Niklas. Review of AdS/CFT Integrability: An Overview (англ.) // Letters in Mathematical Physics[англ.] : journal. — 2012. — January (vol. 99). — P. 425. — doi:10.1007/s11005-011-0516-7. — . — arXiv:1012.4000.
- ↑ Nima Arkani-Hamed; Bourjaily, Jacob L.; Freddy Cachazo; Goncharov, Alexander B.; Alexander Postnikov; Jaroslav Trnka (2012). "Scattering Amplitudes and the Positive Grassmannian". arXiv:1212.5605 [hep-th].
Ссылки
[править | править код]- Kapustin, Anton; Witten, Edward. Electric-magnetic duality and the geometric Langlands program (англ.) // Communications in Number Theory and Physics : journal. — 2007. — Vol. 1, no. 1. — P. 1—236. — doi:10.4310/cntp.2007.v1.n1.a1. — . — arXiv:hep-th/0604151.