Теорема об ограниченности интегрируемой функции (Mykjybg kQ kijguncyuukvmn numyijnjrybkw srutenn)

Перейти к навигации Перейти к поиску

Если функция интегрируема по Риману на отрезке, то она ограничена на этом отрезке.

Замечание 1. Условие ограниченности является необходимым, но не достаточным условием интегрируемости функции по Риману на отрезке.

Замечание 2. Для интегрируемости по Лебегу ограниченности не требуется.

Доказательство

[править | править код]

Пусть функция f(x) интегрируема на [a, b], и . По определению интеграла для любого , (в частности для ) существует такое, что для любого набора точек с диаметром разбиения выполняется:

, отсюда получаем:

Допустим, что функция не ограничена на [a, b], то есть не ограничена на некотором . Обозначим остальную, не относящуюся к данному отрезку часть суммы за σ:

В силу неограниченности всегда можно выбрать такое ξ*, что .

Получено противоречие, следовательно интегрируемая функция должна быть ограниченной.