Теорема Чеботарёва об устойчивости функции (Mykjybg CyQkmgj~fg kQ rvmkwcnfkvmn srutenn)

Перейти к навигации Перейти к поиску

Теорема Чеботарёва об устойчивости функции — обобщение теоремы Эрмита — Билера на случай целых функций. Названа по имени советского математика Николая Чеботарёва.

Формулировка

[править | править код]

Целая функция тогда и только тогда сильно устойчива, когда соответствующие функции и составляют вещественную пару и хотя бы в одной точке вещественной оси функция положительна.

Здесь целой функцией считается функция комплексного переменного , разлагающаяся в степенной ряд: , сходящийся при всех значениях . Целая функция является устойчивой, если у неё нет корней с положительной вещественной частью. Функции и определяются следующим образом. Подставив в вместо чисто мнимое число получаем комплексное число . Целые функции и составляют вещественную пару, если для любых вещественных и все корни функции вещественны. Если функции и составляют вещественную пару, то корни этих функций перемежаются. Корни многочленов и с вещественными коэффициентами перемежаются, если оба многочлена имеют только вещественные и простые корни и между любыми двумя соседними корнями одного многочлена содержится один и только один корень другого многочлена.

Литература

[править | править код]