Теорема Гельфанда — Наймарка (Mykjybg Iyl,sgu;g — Ugwbgjtg)

Перейти к навигации Перейти к поиску

Теорема Гельфанда—Наймарка — два тесно связанных утверждения, описывающие унитальные -алгебры.

Первая теорема Гельфанда — Наймарка

[править | править код]

Пусть A — унитальная коммутативная -алгебра. Тогда преобразование Гельфанда  — изометрический *-изоморфизм.

Вторая теорема Гельфанда — Наймарка

[править | править код]

Для любой -алгебры A существуют гильбертово пространство H и изометрический *-гомоморфизм . Где B(H) — алгебра непрерывных операторов на H.

Теорема доказана И. М. Гельфандом и М. А. Наймарком в 1943 году.[1]

Литература

[править | править код]