Теорема Абеля — Таубера (Mykjybg GQylx — MgrQyjg)

Перейти к навигации Перейти к поиску

Теорема Абеля — Таубера — теорема, обратная теореме Абеля о степенных рядах. Первая теорема типа тауберовых теорем. Была доказана A. Таубером в 1897 г. (теорема Таубера)[1] Формулировку и доказательство при более общих условиях затем дал Дж. Литтльвуд в 1910 г.[2] Затем была доказана Р. Шмидтом[3], Н. Винером[4]. Наиболее простое доказательство дал Дж. Карамата[5]. Формулировку и доказательство при более слабом условии дал Э. Ландау[6].

Формулировка

[править | править код]

Пусть сходится к при . Пусть , когда стремится слева к . Пусть . Тогда .

Примечания

[править | править код]
  1. А. Таубер Ein Satz aus der Theorie der undendlichen Reihen // Monatshefte f. Math. 8 (1897), 273—277
  2. Литтлвуд On the converse of Abel’s theorem on power series // Proc. Lond. Math. Soc. (2), 9 (1910), 434—444
  3. R. Schmidt Uber divergente Folgen und lineare Mittelbindungen // Math. Zeitchr., 22 (1925), 89-152
  4. N. Wiener Tauberian Theorems // Annals of Mathematics, 33 (1932), 1-100
  5. J. Karamata Uber die Hardy — Littlewoodschen Umkehrungen des Abelshen Stetigkeitssatzes // Math. Zeitschr.., 32 (1930), 319—320
  6. E. Landau Uber einen Satz des Herrn Littlewood // Rendiconti di Palermo, 35 (1913), 265—276

Литература

[править | править код]
  • Винер, Н. Интеграл Фурье и некоторые его приложения. — М. : Физматлит, 1963. — С. 255.