Тельца включения (бактерии) (Myl,eg ftlZcyunx (Qgtmyjnn))

Перейти к навигации Перейти к поиску

Тельца включения — это нерастворимые белковые агрегаты, образующиеся при суперэкспрессии рекомбинантных белков у бактерий.

Общие сведения

[править | править код]

В клетках под электронным микроскопом чаще всего тельца включения выглядят как большие тёмные скопления[1][2]. Выделенные из клеток тельца включения представляют собой аморфные сферические или палочковидные образования диаметром от 0.2 мкм до 1.2 мкм[3][4][5].

Основой телец включения является суперэкспрессированный в бактерии белок. Согласно некоторым исследованиям в тельцах включения увеличена пропорция β-структур и, таким образом, многие тельца включения являются амилоидом[6]. Наиболее часто, помимо основного белка, тельца включения содержат шапероны DnaK и GroEL, а также два специализированных белка IbpA (Inclusion body protein A) и IbpB (Inclusion body protein B), найденных преимущественно в тельцах включения[7][8]. Шапероны DnaK находится на поверхности, где он совместно с ClpB участвует в разрушении белкового агрегата и рефолдинге белка, в то время как GroEL — внутри телец включения[9]. Также тельца включения могут содержать дополнительные белки, в зависимости от того, какой конкретно белок экспрессируется. Так, тельца включения человеческого основного фактора роста фибробластов hFGF-2 дополнительно содержали шаперон DnaK, а также фактор трансляции EF-Tu и метаболические ферменты дигидролипоамид дегидрогеназу LpdA, триптофаназу TnaA, тагалоза-1,6-бисфосфат альдолазу GatY[10].

Агрегация. Деагрегация. Роль шаперонов

[править | править код]

Было показано, что агрегация белка в тельца включения — процесс обратимый. Если синтез белка прекращается, то тельца включения постепенно исчезают и полностью свёрнутый белок появляется в цитоплазме[11]. Этот процесс происходит с участием шаперонов DnaK и ClpB и активным использованием энергии гидролиза АТФ[12][13]. В процессе дезинтеграции телец включения также могут участвовать белки IbpA и IbpB и протеазы Lon и ClpP[14].

Использование

[править | править код]

Тельца включения содержат относительно чистый экспрессируемый белок и сравнительно легко выделяются. Единственная проблема — последующий рефолдинг (повторное сворачивание) белка. Поэтому существуют даже специальные системы экспрессии, намеренно направляющие белок в тельца включения. В частности, соединение экспрессируемого белка с такими белками как TrpLE, PurF, PagP, кетостероидизомеразой, приводит к образованию телец включения нужной чистоты[15]. В качестве методов рефолдинга выделяют: разведение белкового раствора, диализ, хроматографический рефолдинг и использование высокого гидростатического давления[16].

Примечания

[править | править код]
  1. J. M. Betton, M. Hofnung. Folding of a mutant maltose-binding protein of Escherichia coli which forms inclusion bodies (англ.) // The Journal of Biological Chemistry : журнал. — 1996-04-05. — Vol. 271, no. 14. — P. 8046-8052. — ISSN 0021-9258. Архивировано 5 февраля 2016 года.
  2. Chenguang Zhu, Ziniu Yu. The surface layer protein of Bacillus thuringiensis CTC forms unique intracellular parasporal inclusion body (англ.) // Journal of Basic Microbiology. — 2008-08-01. — Vol. 48, no. 4. — P. 302-307. — ISSN 0233-111X. — doi:10.1002/jobm.200800013. Архивировано 15 декабря 2015 года.
  3. M. M. Carrió, R. Cubarsi, A. Villaverde. Fine architecture of bacterial inclusion bodies (англ.) // FEBS letters. — 2000-04-07. — Vol. 471, no. 1. — P. 7-11. — ISSN 0014-5793. Архивировано 15 декабря 2015 года.
  4. Hui Kang, Ai-You Sun, Ya-Ling Shen, Dong-Zhi Wei. Refolding and structural characteristic of TRAIL/Apo2L inclusion bodies from different specific growth rates of recombinant Escherichia coli (англ.) // Biotechnology Progress. — 2007-02-01. — Vol. 23, no. 1. — P. 286-292. — ISSN 1520-6033. — doi:10.1021/bp060238c. Архивировано 21 мая 2016 года.
  5. G. A. Bowden, A. M. Paredes, G. Georgiou. Structure and morphology of protein inclusion bodies in Escherichia coli (англ.) // Bio/Technology (Nature Publishing Company). — 1991-08-01. — Vol. 9, no. 8. — P. 725-730. — ISSN 0733-222X. Архивировано 2 августа 2016 года.
  6. Lei Wang. Towards revealing the structure of bacterial inclusion bodies (англ.) // Prion. — 2009-09-01. — Vol. 3, no. 3. — P. 139-145. — ISSN 1933-690X. Архивировано 25 января 2018 года.
  7. Britta Jürgen, Antje Breitenstein, Vlada Urlacher, Knut Büttner, Hongying Lin. Quality control of inclusion bodies in Escherichia coli (англ.) // Microbial Cell Factories. — 2010-01-01. — Vol. 9. — P. 41. — ISSN 1475-2859. — doi:10.1186/1475-2859-9-41. Архивировано 25 января 2018 года.
  8. S. P. Allen, J. O. Polazzi, J. K. Gierse, A. M. Easton. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli (англ.) // Journal of Bacteriology. — 1992-11-01. — Vol. 174, no. 21. — P. 6938-6947. — ISSN 0021-9193. Архивировано 25 января 2018 года.
  9. M. Mar Carrió, Antonio Villaverde. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies (англ.) // Journal of Bacteriology. — 2005-05-01. — Vol. 187, no. 10. — P. 3599-3601. — ISSN 0021-9193. — doi:10.1128/JB.187.10.3599-3601.2005. Архивировано 25 января 2018 года.
  10. Ursula Rinas, Frank Hoffmann, Eriola Betiku, David Estapé, Sabine Marten. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli (англ.) // Journal of Biotechnology. — 2007-01-01. — Vol. 127, no. 2. — P. 244-257. — ISSN 0168-1656. — doi:10.1016/j.jbiotec.2006.07.004. Архивировано 25 января 2018 года.
  11. M. M. Carrió, A. Villaverde. Protein aggregation as bacterial inclusion bodies is reversible (англ.) // FEBS letters. — 2001-01-26. — Vol. 489, no. 1. — P. 29-33. — ISSN 0014-5793. Архивировано 25 января 2018 года.
  12. Assaf Rokney, Merav Shagan, Martin Kessel, Yoav Smith, Ilan Rosenshine. E. coli transports aggregated proteins to the poles by a specific and energy-dependent process (англ.) // Journal of Molecular Biology. — 2009-09-25. — Vol. 392, no. 3. — P. 589-601. — ISSN 1089-8638. — doi:10.1016/j.jmb.2009.07.009. Архивировано 25 января 2018 года.
  13. P. Goloubinoff, A. Mogk, A. P. Zvi, T. Tomoyasu, B. Bukau. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 1999-11-23. — Vol. 96, no. 24. — P. 13732-13737. — ISSN 0027-8424. Архивировано 25 января 2018 года.
  14. Andrea Vera, Anna Arís, Mar Carrió, Nuria González-Montalbán, Antonio Villaverde. Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies (англ.) // Journal of Biotechnology. — 2005-09-23. — Vol. 119, no. 2. — P. 163-171. — ISSN 0168-1656. — doi:10.1016/j.jbiotec.2005.04.006. Архивировано 25 января 2018 года.
  15. Peter M. Hwang, Jonathan S. Pan, Brian D. Sykes. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli (англ.) // FEBS letters. — 2014-01-21. — Vol. 588, no. 2. — P. 247-252. — ISSN 1873-3468. — doi:10.1016/j.febslet.2013.09.028. Архивировано 19 июня 2017 года.
  16. Anindya Basu, Xiang Li, Susanna Su Jan Leong. Refolding of proteins from inclusion bodies: rational design and recipes (англ.) // Applied Microbiology and Biotechnology. — 2011-10-01. — Vol. 92, no. 2. — P. 241-251. — ISSN 1432-0614. — doi:10.1007/s00253-011-3513-y. Архивировано 25 января 2018 года.