Схема Асмута — Блума (V]ybg Gvbrmg — >lrbg)
Схема Асмута — Блума — пороговая схема разделения секрета, построенная с использованием простых чисел. Позволяет разделить секрет (число) между сторонами таким образом, что его смогут восстановить любые участников.
Описание
[править | править код]Пусть — некоторый секрет, который требуется разделить. Выбирается простое число , большее . Выбирается взаимно простых друг с другом чисел , таких что:
Выбирается случайное число и вычисляется
Вычисляются доли:
Участникам раздаются
Теперь, используя китайскую теорему об остатках, можно восстановить секрет , имея и более долей.
Пример
[править | править код]Предположим, что нам нужно разделить секрет между четырьмя участниками таким образом, чтобы любые три из них могли этот секрет восстановить (а два участника — не могли бы). То есть нужно реализовать (3,4)-пороговую схему.
В качестве простого числа выберем , в качестве взаимно простых — . Проверяем, что:
Выбираем случайное число и вычисляем:
Вычисляем доли:
Теперь попробуем восстановить исходный секрет, имея на руках доли , , . Составим систему уравнений:
Мы можем восстановить , используя китайскую теорему об остатках.
Зная , мы восстанавливаем секрет.
В данном примере (так как 155<17*19) два участника спокойно восстановят секрет. M' должно быть больше произведения долей неавторизованных участников.
Обобщенная схема Асмута – Блума в кольце многочленов от нескольких переменных
[править | править код]Рассмотрим кольцо многочленов от нескольких переменных , над полем Галуа . Пусть зафиксирован некоторый мономиальный порядок. Тогда приведение многочлена по модулю идеала определено однозначно. Пусть – нульмерные идеалы, а — некоторые многочлены. Тогда справедливо утверждение: система сравнений
либо несовместна, либо имеет единственное решение по модулю наименьшего общего кратного(НОК) идеалов . В случае, если идеалы попарно взаимно простые, т. е. , имеем обобщенную китайскую теорему об остатках, причем решение системы всегда существует.
Рассмотрим сначала обобщение схемы Миньотта. Секретом будет некоторый многочлен , участнику выдается модуль и частичный секрет . Для реализации структуры доступа необходимо и достаточно, чтобы секрет был приведенным по модулю НОК идеалов из любого разрешенного подмножества участников и не являлся таковым для запрещенных подмножеств.
В обобщенной схеме Асмута – Блума присутствует дополнительный модуль , а секретом является . В этой схеме называется промежуточным секретом.
Совершенность схемы
[править | править код]Схема разделения секрета называется совершенной, если запрещенное подмножество участников не получает никакой дополнительной информации о секрете, кроме априорной. Другими словами, распределение секрета остается равномерным и при наличии частичных секретов участников из запрещенного подмножества. Схема Асмута – Блума в отличие от схемы Миньотта может быть совершенной.
Для выработки критерия совершенности, исследуем схему Асмута – Блума в кольце . Обозначим через множество мономов, приведенных по модулю , а через – линейную оболочку . Пусть также
– множество мономов, лежащих в пересечении идеалов всех разрешенных подмножеств. Отметим, что промежуточный секрет .
Теорема. Схема Асмута – Блума в кольце совершенна тогда и только тогда, когда выполнены следующие условия:
- 1) .
- 2) .
Доказательство.
Необходимость. Пусть есть совершенная схема Асмута – Блума, но первое условие теоремы не выполнено, т. е. . Тогда множество возможных значений секрета для такого участника можно сузить: . Следовательно, схема несовершенна – получили противоречие.
Пусть первое условие выполнено, но не выполнено второе, т. е. существует запрещенное подмножество такое, что . Иными словами, существует моном . Рассмотрим многочлен
где – общий частичный секрет, восстановленный участниками из подмножества .
Заметим, что многочлен тогда удовлетворяет следующим условиям:
- 1)
- 2)
- 3) Содержит моном .
Следовательно, . Положим . Согласно китайской теореме об остатках, для системы
существует единственное решение в , но по построению этим решением является многочлен . С другой стороны, , а значит, значение для секрета невозможно – опять получили противоречие.
Достаточность. Пусть условия теоремы выполнены. Покажем, что секрет остается равномерно распределенным и при наличии частичных секретов из запрещенного подмножества. Рассмотрим произвольное запрещенное подмножество и множество многочленов
— множество возможных значений промежуточного секрета.
Зафиксируем некоторое значение секрета .Тогда существует единственный многочлен , такой, что согласно китайской теореме об остатках
Рассмотрим теперь 2 случая:
1) Если , то каждому значения секрета соответствует единственный промежуточный секрет из множества , т.е. секрет остается равномерно распределенным при наличии частичных секретов из подмножества .
2) Пусть тогда . Каждому многочлену , содержащему хотя бы один моном из , поставим в соответствие многочлен
Очевидно, что . Тогда каждому значению секрета соответствует множество промежуточных секретов
Очевидно, что множества равномощные. Следовательно, в множестве для каждого значения секрета существует одинаковое число возможных значений промежуточного секрета, что влечет равномерное распределение секрета и при наличии частичных секретов из запрещенного подмножества.
Теорема доказана.
Литература
[править | править код]- Шнайер Б. Схема Асмута-Блума // Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си = Applied Cryptography. Protocols, Algorithms and Source Code in C. — М.: Триумф, 2002. — С. 589—590. — 816 с. — 3000 экз. — ISBN 5-89392-055-4.
- Asmuth C., Bloom J. A modular approach to key safeguarding (англ.) // IEEE Transactions on Information Theory / F. Kschischang — IEEE, 1983. — Vol. 29, Iss. 2. — P. 208—210. — ISSN 0018-9448; 1557-9654 — doi:10.1109/TIT.1983.1056651
- Шенец Н. Н. Об идеальных модулярных схемах разделения секрета в кольцах многочленов от нескольких переменных // Международный конгресс по информатике: информационные системы и технологии: материалы международного научного конгресса 31 окт. — Минск: БГУ, 2011. — Т. 1. Статьи факультета прикладной математики и информатики. — С. 169—173. — ISBN 978-985-518-563-6
- Stinson, D. R. Cryptography: theory and practice. — Chapman and Hall/CRC, 2005. — P. 512. — ISBN 978-1584885085.