Соленоид Смейла — Вильямса (Vklyukn; Vbywlg — Fnl,xbvg)

Перейти к навигации Перейти к поиску
Образ отображения соленоида

Соленоид Смейла — Вильямса — пример обратимой динамической системы, аналогичной по поведению траекторий отображению удвоения на окружности. Более точно эта динамическая система определена на полнотории, и за одну её итерацию угловая координата удваивается; откуда автоматически возникает экспоненциальное разбегание траекторий и хаотичность динамики. Также соленоидом называют и максимальный аттрактор этой системы (откуда, собственно, и происходит название): он устроен как (несчётное) объединение «нитей», наматывающихся вдоль полнотория.

Определение

[править | править код]

Отображением соленоида называют отображение

полнотория в себя, заданное как

Здесь диск для удобства рассматривается как единичный диск на комплексной плоскости: .

Максимальный аттрактор этого отображения (как и всю соответствующую динамическую систему) называют соленоидом Смейла — Вильямса.

  • Отображение соленоида гиперболично.
  • Сам соленоид оказывается гомеоморфен множеству, получаемому при реализации процедуры надстройки над одометром — отображением прибавления единицы в 2-адических целых числах .
  • Динамика на соленоиде допускает символическое кодирование: точке соленоида можно (почти взаимно-однозначно) сопоставить двусторонне-бесконечным последовательностям нулей и единиц, причём применению отображения будет соответствовать левый сдвиг на пространстве последовательностей, а часть последовательности с положительными индексами будет являться двоичной записью угловой координаты.

Литература

[править | править код]
  • Синай Я. Г., Вершик А. М., Добрушин Р. Л., Динамические системы-2, ВИНИТИ.
  • Каток А. Б., Хассельблат Б.[нем.]. Введение в современную теорию динамических систем с обзором последних достижений / Пер. с англ. под ред. А. С. Городецкого. — М.: МЦНМО, 2005. — 464 с. — ISBN 5-94057-063-1.