Симплициальная категория (Vnbhlnengl,ugx tgmyikjnx)

Перейти к навигации Перейти к поиску

Симплициальная категория (также симпле́кс-категория, ординальная категория)[1] — категория непустых конечных ординалов, морфизмы которой — монотонные функции. Играет важную роль в алгебраической топологии[2], является основной для таких конструкций, как симплициальный объект и симплициальное множество.

Симплициальная категория (иногда используется обозначение [3]) строится из объектов вида , где  — натуральное число, и морфизмов таких, что из следует . Иными словами, объектами симплициальной категории являются конечные порядковые числа, а морфизмы — нестрого монотонные функции между ними. Порядковое число является начальным объектом категории, а  — терминальным.

Любой морфизм симплициальной категории может быть порождён композицией морфизмов[4] ():

,
,

определённых следующим образом:

(возрастающее инъективное отображение, «пропускающее» ),
(неубывающее сюръективное отображение, принимающее значение дважды).

Более того, для всякого единственно представление:

,

где , , .

Эти морфизмы удовлетворяют следующим соотношениям:

, если ,
, если ,

Данные соотношения однозначно определяют морфизмы и .

Связанные определения

[править | править код]

Порядковое сложение — бифунктор , определённый на порядковых числах как обычное сложение:

,

а для морфизмов и по следующей схеме:

.

Симплициальная категория с порядковым сложением образует строго моноидальную категорию.

В приложениях также используется пополненная симплициальная категория (англ. augmented simplicial category)  — симплициальная категория, дополненная ординалом : . Иногда пополненную симплициальную категорию называют алгебраической симплициальной категорией, в этом случае называют топологической.

Примечания

[править | править код]
  1. Иногда симплициальной категорией называют симплициальный объект из категории малых категорий. Кроме того, иногда таким же образом называют симплициально обогащённые категории (англ. simplicially enriched category) — категории, обогащённые над категорией симплициальных множеств. При наличии в контексте таких конструкций термина «симплициальная категория» для стараются избегать, используя альтернативные термины или только обозначение.
  2. Маклейн, 2004, с. 204.
  3. Как часто также обозначается категория всех линейно упорядоченных множеств, в которой симплициальная категория является полной подкатегорией
  4. Симплициальный объект — статья из Математической энциклопедии. С. Н. Малыгин, М. М. Постников

Литература

[править | править код]
  • Маклейн С. Глава 7. Моноиды // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. — М.: Физматлит, 2004. — С. 188—221. — 352 с. — ISBN 5-9221-0400-4.
  • Габриель П., Цисман М. Категории частных и теория гомотопий = Calculus of Fractions and Homotopy Theory / Перевод с английского М. М. Постникова. — М.: Мир, 1971. — С. 69—72. — 296 с.