Преобразование координат (HjykQjg[kfguny tkkj;nugm)

Перейти к навигации Перейти к поиску

Преобразование координат — замена системы координат на плоскости, в пространстве или, в самом общем случае, на заданном -мерном многообразии.

Пример перехода от полярных координат к декартовым на евклидовой плоскости:

Чаще всего преобразование координат производится для перехода к более простой или более удобной для анализа математической модели. Например, уравнения некоторых плоских кривых в полярных координатах существенно проще, чем в декартовых, а для исследования осесимметричных тел удобно направить одну из осей координат вдоль оси симметрии.

Определение

[править | править код]

Преобразование координат — совокупность правил[1], ставящих в соответствие каждому набору координат на некотором -мерном многообразии другой набор координат :

При этом после преобразования должно сохраняться однозначное соответствие между точками многообразия и наборами координат (допускаются исключения для некоторых особых точек).

Сводку основных формул преобразования для практически важных координатных систем см. в статье Система координат.

Активная (слева) и пассивная (справа) точки зрения на вращение. Слева поворачивается плоскость, справа — оси координат.

Преобразование координат может трактоваться двояко[2].

  1. Пассивная точка зрения — происходит смена координат точек многообразия. Все точки при этом остаются на своих местах.
  2. Активная точка зрения — преобразование ставит в соответствие каждой точке многообразия другую точку. Система координат при этом не меняется.

Пример для евклидовой плоскости:

Данное преобразование можно истолковать одним из двух способов.

  1. Смена системы координат, которая увеличивает абсциссы всех точек на 1.
  2. Перенос всех точек плоскости на 1 параллельно оси

Классификация

[править | править код]

По типу формул все преобразования координат можно сгруппировать в разнообразные классы с общими типовыми свойствами. Далее перечислены некоторые практически особо важные классы преобразований, которые могут комбинироваться один с другим.

Обычно выделенный класс является группой преобразований в смысле общей алгебры, то есть композиция двух преобразований относится к тому же классу и для каждого преобразования существует обратное. Исследование этой группы позволяет выделить симметрии и инварианты преобразований.

Инварианты

[править | править код]

Инвариантом данного преобразования координат называется функция координат, значения которой после преобразования не меняются[3]. Например, вращения и переносы не меняют расстояния между точками евклидова пространства. Инварианты являются важной характеристикой группы преобразований.

Литература

[править | править код]
  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. — М.: Наука, 1986. — 544 с.
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
  • Яглом И. М. Геометрические преобразования. Тома 1, 2. — М.: Гостехиздат, 1956, 612 с.

Примечания

[править | править код]