Поток средней кривизны (Hkmkt vjy;uyw tjnfn[ud)
Перейти к навигации
Перейти к поиску
Поток средней кривизны — определённый процесс деформации гиперповерхностей в римановом многообразии, в частности для поверхностей в 3-мерном евклидовом пространстве.
Поток деформирует поверхность в нормальном направлении со скоростью, равной её средней кривизне. Например, сфера под действием потока сжимается в точку.
Уравнение
[править | править код]Однопараметрическое семейство поверхностей является потоком средней кривизны, если
где и обозначают среднюю кривизну и единичный вектор нормали к поверхности в точке .
Свойства
[править | править код]- Уравнение потока является параболическим дифференциальным уравнением в частных производных.
- В частности, это гарантирует существование решения для малых значений временного параметра.
- Минимальные поверхности являются критическими точками для потока средней кривизны.
- Обычно поток средней кривизны формирует особенность за конечное время, начиная с которой поток перестаёт быть определён.
- Формула монотонности Хуйскена[англ.]
- Под действием потока замкнутая выпуклая гиперповерхность в евклидовом пространстве остаётся выпуклой. Более того, она схлопывается в точку за конечное время, и непосредственно до этого момента поверхность приближается к стандартной сфере с точностью до изменения масштаба.
- В общем римановом многообразии выпуклость гиперповерхности не сохраняется в потоке, даже если дополнительно потребовать положительность секционной кривизны.
См. также
[править | править код]- Укорачивающий поток — частный случай потока средней кривизны для кривых на плоскости.
- Поток Риччи — близкая конструкция для деформации римановых многообразий.
Применения
[править | править код]- Поток предоставляет естественную операцию сглаживания для гиперповерхностей. В частности, даёт аппроксимацию данной -гладкой гиперповерхности аналитическими.
Литература
[править | править код]- Ecker, Klaus (2004), Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, vol. 57, Boston, MA: Birkhäuser, doi:10.1007/978-0-8176-8210-1, ISBN 0-8176-3243-3, MR 2024995.
- Mantegazza, Carlo (2011), Lecture Notes on Mean Curvature Flow, Progress in Mathematics, vol. 290, Basel: Birkhäuser/Springer, doi:10.1007/978-3-0348-0145-4, ISBN 978-3-0348-0144-7, MR 2815949.
- Lu, Conglin; Cao, Yan; Mumford, Davidd (2002), "Surface evolution under curvature flows", Journal of Visual Communication and Image Representation, 13 (1–2): 65—81, doi:10.1006/jvci.2001.0476. См., в частности, уравнения 3a и 3b.