Показатель Гёльдера (Hktg[gmyl, I~l,;yjg)
Показатель Гёльдера (известен также как показатель Липшица) — характеристика гладкости функции. Локальный (точечный) показатель Гёльдера характеризует локальную гладкость (локальную нерегулярность) функции в точке. В общем случае показатель Гёльдера является вещественным.
Определение
[править | править код]Функция имеет локальный (или точечный) показатель Гёльдера в точке тогда, когда существует константа и полином порядка такой, что
Если функция регулярна по Гёльдеру с показателем (имеет однородный показатель Гёльдера ) в окрестности точки , то это означает что функция обязательно раз дифференцируема в этой окрестности.
Функция, которая терпит разрыв в точке , имеет показатель Гёльдера в этой точке.
Локальный (точечный) показатель Гёльдера может произвольно изменяться во времени. Это изменение может создаваться функцией с так называемыми неизолированными нерегулярностями, где функция имеет разную регулярность по Гёльдеру в каждой точке. В противоположность, постоянный (однородный) во времени показатель Гёльдера обеспечивает более глобальное измерение регулярности, которое относится ко всему интервалу.
Говоря неформальным языком, показатель Гёльдера определяет дробную дифференцируемость функции (в точке).
Свойства
[править | править код]Показатель Гёльдера функции на множестве определяется предельным спадом его Фурье-преобразования. Сигнал ограничен и имеет однородный показатель Гёльдера на множестве , если .
Локальный показатель Гёльдера может быть рассчитан исходя из спада коэффициентов вейвлет-преобразования функции, находящихся на линии локальных максимумов модуля вейвлет-преобразования[1].
См. также
[править | править код]Примечания
[править | править код]- ↑ Mallat S., Hwang W. L. Singularity detection and processing with wavelets // IEEE Transactions on Information Theory. — 1992. — Vol. 38. — No. 2. — P. 617—639.
Ссылки
[править | править код]Это заготовка статьи по математике. Помогите Википедии, дополнив её. |