Нормальный алгоритм (Ukjbgl,udw glikjnmb)
Норма́льный алгори́тм (алгори́фм) Ма́ркова (НАМ, также марковский алгоритм) — один из стандартных способов формального определения понятия алгоритма (другой известный способ — машина Тьюринга). Понятие нормального алгоритма введено А. А. Марковым (младшим) в конце 1940-х годов в работах по неразрешимости некоторых проблем теории ассоциативных вычислений. Традиционное написание и произношение слова «алгорифм» в этом термине также восходит к его автору, многие годы читавшему курс математической логики на механико-математическом факультете МГУ.
Нормальный алгоритм описывает метод переписывания строк, похожий по способу задания на формальные грамматики. НАМ — полный по Тьюрингу язык, что делает его по выразительной силе эквивалентным машине Тьюринга и, следовательно, современным языкам программирования. На основе НАМ был создан функциональный язык программирования Рефал.
Описание
[править | править код]Нормальные алгоритмы вербальны, то есть предназначены для применения к словам в различных алфавитах.
Определение всякого нормального алгоритма состоит из двух частей: определения алфавита алгоритма (к словам, из символов которого алгоритм будет применяться) и определения его схемы. Схемой нормального алгоритма называется конечный упорядоченный набор так называемых формул подстановки, каждая из которых может быть простой или заключительной. Простыми формулами подстановки называются слова вида , где и — два произвольных слова в алфавите алгоритма (называемые, соответственно, левой и правой частями формулы подстановки). Аналогично, заключительными формулами подстановки называются слова вида , где и — два произвольных слова в алфавите алгоритма. При этом предполагается, что вспомогательные буквы и не принадлежат алфавиту алгоритма (в противном случае на исполняемую ими роль разделителя левой и правой частей следует избрать другие две буквы).
Примером схемы нормального алгоритма в пятибуквенном алфавите может служить схема
Процесс применения нормального алгоритма к произвольному слову в алфавите этого алгоритма представляет собой дискретную последовательность элементарных шагов, состоящих в следующем. Пусть — слово, полученное на предыдущем шаге работы алгоритма (или исходное слово , если текущий шаг — первый). Если среди формул подстановки нет такой, левая часть которой входила бы в , то работа алгоритма считается завершённой, и результатом этой работы считается слово . Иначе среди формул подстановки, левая часть которых входит в , выбирается самая первая. Если эта формула подстановки имеет вид , то из всех возможных представлений слова в виде выбирается такое, при котором — самое короткое, после чего работа алгоритма считается завершённой с результатом . Если же эта формула подстановки имеет вид , то из всех возможных представлений слова в виде выбирается такое, при котором — самое короткое, после чего слово считается результатом текущего шага, подлежащим дальнейшей переработке на следующем шаге.
Например, в ходе процесса применения алгоритма с указанной выше схемой к слову последовательно возникают слова , , , , , , , , , и , после чего алгоритм завершает работу с результатом . Другие примеры смотрите ниже.
Любой нормальный алгоритм эквивалентен некоторой машине Тьюринга, и наоборот — любая машина Тьюринга эквивалентна некоторому нормальному алгоритму. Вариант тезиса Чёрча — Тьюринга, сформулированный применительно к нормальным алгоритмам, принято называть «принципом нормализации».
Нормальные алгоритмы оказались удобным средством для построения многих разделов конструктивной математики. Кроме того, заложенные в определении нормального алгоритма идеи используются в ряде ориентированных на обработку символьной информации языков программирования — например, в языке Рефал.
Примеры
[править | править код]Пример 1
[править | править код]Использование алгоритма Маркова для преобразований над строками.
Алфавит:
- { а…я, А…Я, «пробел», «точка» }
Правила:
- А → апельсин
- кг → килограмм
- М → магазинчике
- Т → том
- магазинчике →. ларьке (заключительная формула)
- в том ларьке → на том рынке
Исходная строка:
- Я купил кг Аов в Т М.
При выполнении алгоритма строка претерпевает следующие изменения:
- Я купил кг апельсинов в Т М.
- Я купил килограмм апельсинов в Т М.
- Я купил килограмм апельсинов в Т магазинчике.
- Я купил килограмм апельсинов в том магазинчике.
- Я купил килограмм апельсинов в том ларьке.
На этом выполнение алгоритма завершится (так как будет достигнута формула № 5, которую мы сделали заключительной).
Пример 2
[править | править код]Данный алгоритм преобразует двоичные числа в «единичные» (в которых записью целого неотрицательного числа N является строка из N палочек). Например, двоичное число 101 преобразуется в 5 палочек: |||||.
Алфавит:
- { 0, 1, | }
Правила:
- 1 → 0|
- |0 → 0||
- 0 → "" (пустая строка)
Исходная строка:
- 101
Выполнение:
- 0|01
- 0|00|
- 00||0|
- 00|0|||
- 000|||||
- 00|||||
- 0|||||
- |||||
См. также
[править | править код]Прочие абстрактные исполнители и формальные системы вычислений
[править | править код]- Машина Тьюринга (автоматное программирование)
- Машина Поста (автоматное программирование)
- Рекурсивная функция (теория вычислимости)
- Лямбда-исчисление (функциональное программирование)
- Brainfuck (императивное программирование)
Языки, основанные на нормальных алгоритмах
[править | править код]Прочие алгоритмы
[править | править код]Ссылки
[править | править код]- Yad Studio — IDE и интерпретатор для Нормальных Алгоритмов Маркова (Open Source)
- Javascript-эмулятор нормальных алгорифмов Маркова (работает on-line)
Эту статью необходимо исправить в соответствии с правилом Википедии об оформлении статей. |
Эта статья или раздел нуждается в переработке. |