Нейтринная минимальная стандартная модель (Uywmjnuugx bnunbgl,ugx vmgu;gjmugx bk;yl,)
Нейтринная минимальная стандартная модель (англ. The Neutrino Minimal Standard Model; также используются сокращения νMSM или nuMSM) представляет собой расширение Стандартной модели физики элементарных частиц путём добавления трёх (по числу поколений) правых стерильных (не участвующих в слабых взаимодействиях) нейтрино с массами, не превышающими электрослабого масштаба энергий. Модель была впервые предложена в 2005 году в работе Такэхико Асаки (яп. 淺賀 岳彦 Asaka Takehiko) и Михаила Евгеньевича Шапошникова[1]. В данной модели в рамках единого подхода возможно получить разрешение проблем нейтринных осцилляций, тёмной материи и барионной асимметрии Вселенной[2].
Поиск лёгких стерильных нейтрино
[править | править код]Результаты экспериментов по изучению нейтринных осцилляций в целом хорошо описываются схемой с тремя слабовзаимодействующими нейтрино. Однако несколько так называемых нейтринных аномалий не находят объяснения в рамках такого подхода и, возможно, указывают на существование по крайней мере ещё одного, дополнительного, нейтринного состояния (стерильного нейтрино) с массой ~ 1 эВ[3].
- В нейтринном эксперименте с короткой базой LSND (Liquid Scintillator Neutrino Detector[англ.])[4], в котором исследовалось смешивание мюонных антинейтрино и электронных антинейтрино в результате осцилляций, был обнаружен избыток электронных антинейтрино на уровне 3,8σ для величины отношения базы эксперимента L к энергии нейтрино E/L ~ 1 эВ². Проверка этого эффекта проводилась в эксперименте MiniBooNE (англ. Mini Booster Neutrino Experiment) (Иллинойс, США)[5], результаты которого в целом согласовались с результатом LSND, однако достигнутая в MiniBooNE чувствительность не позволила однозначно подтвердить или опровергнуть результат LSND.
- При измерениях с искусственными источниками нейтрино в экспериментах SAGE (Soviet-American Gallium Experiment на Баксанской нейтринной обсерватории) и GALLEX (Gallium Experiment в Национальной лаборатории Гран-Сассо) число зарегистрированных событий оказалось меньше ожидаемого. Статистическая значимость эффекта ("галлиевая аномалия”) составила около 2,9σ. Этот дефицит также может быть объяснён осцилляциями между электронным нейтрино и стерильным нейтрино с Δm² ~ 1 эВ²[6][7].
- В результате новой оценки потока антинейтрино от реакторов[8] получено, что величина этого потока примерно на 3 % больше предыдущего значения, используемого в течение длительного времени в реакторных экспериментах. Это привело к тому, что потоки нейтрино, измеренные в разных экспериментах на расстояниях ≤ 100 м от активной зоны реактора, оказались меньше потоков, определённых для этих расстояний на основе работы[8]. Такое расхождение между предсказанным и измеренным потоками антинейтрино могло бы быть объяснено исчезновением антинейтрино из-за осцилляций с Δm² ~ 1 эВ². Этот эффект, статистическая значимость которого составила 2,8σ, получил название "реакторная аномалия". Но дальнейшие эксперименты подставили под сомнение данный эффект[3].
- Новый нейтринный эксперимент BEST (англ. Baksan Experiment on Sterile Transitions), начатый в 2019 году на Баксанской нейтринной обсерватории и направленный на обнаружение предполагаемых нейтринных осцилляций между электронными и стерильными нейтрино по предварительным результатам подтверждает эффект. По состоянию на осень 2021 года со статистической достоверностью приближающейся к 4σ[9].
Примечания
[править | править код]- ↑ T. Asaka and M. Shaposhnikov. The νMSM, Dark Matter and Baryon Asymmetry of the Universe (англ.) // Physics Letters B[англ.] : journal. — 2005. — Vol. 620, no. 1—2. — P. 17—26. — doi:10.1016/j.physletb.2005.06.020.
- ↑ Д. С. Горбунов, Стерильные нейтрино и их роль в физике частиц и космологии Архивная копия от 20 сентября 2015 на Wayback Machine // Успехи физических наук, 184:5 (2014), 545—554
- ↑ 1 2 Юрий Григорьевич Куденко. Осцилляции нейтрино: последние результаты и ближайшие перспективы // Успехи физических наук. — 2018-08-01. — Т. 188, вып. 8. — С. 821–830. — ISSN 0042-1294. — doi:10.3367/ufnr.2017.12.038271. Архивировано 8 октября 2020 года.
- ↑ Aguilar A et al. LSND Collab. (англ.) // Phys. Rev.. — 2001.
- ↑ A. A. Aguilar-Arevalo. Addendum to the MiniBooNE Run Plab. MinneBooNE Physics in 2006. — Office of Scientific and Technical Information (OSTI), 2004-11-02.
- ↑ Abdurashitov J N et al. Phys. Rev. // Phys. Rev.. — Т. 73.
- ↑ W. Hampel. Erste Sonnenneutrino-Messung durch GALLEX // Physik Journal. — 1992-11. — Т. 48, вып. 11. — С. 901–905. — ISSN 0031-9279. — doi:10.1002/phbl.19920481107.
- ↑ 1 2 Brief Mention // American Literature. — 2011-01-01. — Т. 83, вып. 4. — С. 885–888. — ISSN 1527-2117 0002-9831, 1527-2117. — doi:10.1215/00029831-1437342.
- ↑ Достоверность существования стерильных нейтрино увеличили на одно стандартное отклонение . N+ (12 октября 2021). Дата обращения: 12 октября 2021. Архивировано 12 октября 2021 года.
Ссылки
[править | править код]- Алексей Понятов Начато формирование коллаборации для поиска скрытых частиц // Портал журнала «Наука и жизнь» :: Новости науки и техники, 5 июля 2014
- Михаил Шапошников Neutrino Minimal Standard Model // ScienceWISE (англ.)
- Mikhail Shaposhnikov (2011) New Physics without New Energy Scale // Physics Beyond the Standard Models of Particles, Cosmology and Astrophysics: pp. 219—228. DOI: 10.1142/9789814340861_0021 (англ.)